* Nest various top-level Iterator and Index types, and flatten extensions.
* Fix tests from nesting iterator
* Nest Unsafe*BufferPointer.Iterator, extensionify UnsafeBufferPointer
* Degyb LazyCollection
* Nest Flatten iterator and index
This includes functions without type parameters that are generic
because they are members of a generic context. This addresses a
diagnostics regression because the '==' operators for Optional, Array,
and Dictionary were made into members.
The resulting error message is a little ugly, but is more informative
(and much shorter) than what we had before.
The etymology of these terms isn't about race, but "black" = "blocked"
and "white" = "allowed" isn't really a good look these days. In most
cases we weren't using these terms particularly precisely anyway, so
the rephrasing is actually an improvement.
Specialize and improve the "downcast only unwraps optionals"
diagnostic to provide specific diagnostics + Fix-Its for the various
casts of forced cast, conditional cast, and "isa" check. Specifically:
* With a forced cast, customize the diagnostic. We still insert the
appropriate number of !'s, but now we remove the 'as! T' (if an
implicit conversion would suffice) or replace the 'as!' with 'as'
(if we still need a bridge)
* With a conditional cast, only emit a diagnostic if we're removing
just one level of optional. In such cases, we either have a no-op
(an implicit conversion would do) or we could just use 'as' to the
optional type, so emit a customized warning to do that. If we are
removing more than one level of optional, don't complain:
conditional casts can remove optionals. Add the appropriate Fix-Its
here.
* With an 'is' expression, only emit a diagnostic if we're removing
just one level of optional. In this case, the 'is' check is
equivalent to '!= nil'. Add a Fix-It for that.
Across the board, reduce the error to a warning. These are
semantically-well-formed casts, it's just that they could be written
better.
Fixes rdar://problem/28856049 and rdar://problem/22275685.
For example, if someone tries to use the newly-generic type Cache,
from Foundation:
var cache = Cache()
they'll now get a fix-it to substitute the default generic parameters:
var cache = Cache<AnyObject, AnyObject>()
The rules for choosing this placeholder type are based on constraints
and won't be right 100% of the time, but they should be reasonable.
(In particular, constraints on associated types are ignored.)
In cases where there's no one concrete type that will work, an Xcode-
style placeholder is inserted instead.
- An unconstrained generic parameter defaults to 'Any'.
- A superclass-constrained parameter defaults to that class,
e.g. 'UIView'.
- A parameter constrained to a single @objc protocol (or to AnyObject)
defaults to that protocol, e.g. 'NSCoding'.
- Anything else gets a placeholder using the generic parameter's name
and protocol composition syntax.
rdar://problem/27087345
Emit a warning for optionals that are implicitly converted to Any, and
add fixits giving options to:
- Add '??' with a default value after
- Force-unwrap the optional with '!'
- Explicitly cast to 'as Any' to silence the warning
This covers diagnostics aspect of SE-0140.
rdar://problem/28196843
From the Swift documentation:
"If you define an optional variable without providing a default value,
the variable is automatically set to nil for you."
Simplify e.g., ASTContext::getBridgedToObjC(), which no longer needs
the optional return.
Eliminate the now-unused constraint kind for checking bridging to
Objective-C.
The id-as-Any work regressed cases where Swift code could specify
heterogeneous collection literals, e.g.,
var states: [String: Any] = [
"California": [
"population": 37_000_000,
"cities": ["Los Angeles", "San Diego", "San Jose"],
],
"Oregon": [
"population": 4_000_000,
"cities": ["Portland", "Salem", "Eugene"],
]
]
Prior to this, the code worked (when Foundation was imported) because
we'd end up with literals of type [NSObject : AnyObject].
The new defaulting rule says that the element type of an array literal
and the key/value types of a dictionary literal can be defaulted if no
stronger type can be inferred. The default type is:
Any, for the element type of an array literal or the value type of a
dictionary literal, or
AnyHashable, for the key type of a dictionary literal.
The latter is intended to compose with implicit conversions to
AnyHashable, so the most-general inferred dictionary type is
[AnyHashable : Any] and will work for any plausible dictionary
literal.
To prevent this inference from diluting types too greatly, we don't
allow this inference in "top-level" expressions, e.g.,
let d = ["a" : 1, "b" : "two"]
will produce an error because it's a heterogeneous dictionary literal
at the top level. One should annotate this with, e.g.,
let d = ["a" : 1, "b" : "two"] as [String : Any]
However, we do permit heterogeneous collections in nested positions,
to support cases like the original motivating example.
Fixes rdar://problem/27661580.
SE-0072 took implicit bridging conversions away, which regressed the ability to express NSDictionaries as dictionary literals and index them using literal keys. Address this by changing the signature of init(dictionaryLiteral:) to use Hashable and Any, and by replacing the subscript from Objective-C with one using _Hashable that does the bridging on the user's behalf. This largely restores the QoI of working with NS collections.
This reverts commit 6542100d62. SE-0116
expands Objective-C `id` to Swift `Any`, moving the conversion into the
bridging mechanism rather than the type system.
The reverts part of my previous patch. Removing the operators is too much of a
performance penalty to take. The difference is that the Strideable operators are
not transparent.
I still need to remove the UnsafeRawPointer operators, so -Onone performance
will be bad in some cases until this is fixed:
<rdar://problem/27513184> [perf] Strideable operators are not transparent. This is a huge -Onone performance penalty.
Generic versions of these functions are provided by Strideable.
This is required for SE-0107: UnsafeRawPointer. Otherwise, the presence
of non-generic operator overloads will conflict with existing operators
on String.
* Add UnsafeRawPointer type and API.
As proposed in SE-0107: UnsafeRawPointer.
https://github.com/apple/swift-evolution/blob/master/proposals/0107-unsaferawpointer.md
The fundamental difference between Unsafe[Mutable]RawPointer and
Unsafe[Mutable]Pointer<Pointee> is simply that the former is used for "untyped"
memory access, and the later is used for "typed" memory access. Let's refer to
these as "raw pointers" and "typed pointers". Because operations on raw pointers
access untyped memory, the compiler cannot make assumptions about the underlying
type of memory and must be conservative. With operations on typed pointers, the
compiler may make strict assumptions about the type of the underlying memory,
which allows more aggressive optimization.
Memory can only be accessed by a typed pointer when it is currently
bound to the Pointee type. Memory can be bound to type `T` via:
- `UnsafePointer<T>.allocate(capacity: n)`
- `UnsafePointer<Pointee>.withMemoryRebound(to: T.self, capacity: n) {...}`
- `UnsafeMutableRawPointer.initializeMemory(as: T.self, at: i, count: n, to: x)`
- `UnsafeMutableRawPointer.initializeMemory(as: T.self, from: p, count: n)`
- `UnsafeMutableRawPointer.moveInitializeMemory(as: T.self, from: p, count: n)`
- `UnsafeMutableRawPointer.bindMemory(to: T.self, capacity: n)`
Mangle UnsafeRawPointer as predefined substitution 'Sv' for Swift void
pointer ([urp] are taken).
* UnsafeRawPointer minor improvements.
Incorporate Dmitri's feedback.
Properly use a _memmove helper.
Add load/storeBytes alignment precondition checks.
Reword comments.
Demangler tests.
* Fix name mangling test cases.
* Fix bind_memory specialization.
If something isn't a class or bridgeable by value or error bridging, we can still fall back to universal bridging by the runtime. Make this available for manual use by an explicit `as AnyObject` cast.
Implements almost all of SE-0067. There are a few outstanding features; this implementation does not have:
- formRemainder(dividingBy:)
- formSquareRoot()
- addProduct(_:,_:)
which require additions to the Builtin module. I can probably figure out how to do these, but I haven't had a chance to do so yet. Also missing are the generic initializers and comparisons whose implementation depends on having new Integer protocols.
The last remaining feature of SE-0067 is that while the basic operators +,-,*,/, etc are moved onto the FloatingPoint protocol, they are still required on the concrete types in order to disambiguate overloads. Fixing this seems to require either modifying the overload resolution rules or removing these operators from some other protocols. Or it might just require that someone smarter than me looks at the problem.
Passes the existing tests locally (with the included changes). I'm working on additional tests for the new features.
as a failure to convert the individual operand, since the operator
is likely conceptually generic in some way and the choice of any
specific overload is probably arbitrary.
Since we now fall back to a better-informed diagnostics point, take
advantage of this to generate a specialized diagnostic when trying to
compare values of function type with ===.
Fixes rdar://25666129.
This reverts commit 073f427942,
i.e. it reapplies 35ba809fd0 with a
test fix to expect an extra note in one place.
as a failure to convert the individual operand, since the operator
is likely conceptually generic in some way and the choice of any
specific overload is probably arbitrary.
Since we now fall back to a better-informed diagnostics point, take
advantage of this to generate a specialized diagnostic when trying to
compare values of function type with ===.
Fixes rdar://25666129.
There are a couple of features that are not yet implemented, because they require additions to the Builtin module. Specifically, this implementation does not have:
- formRemainder(dividingBy:)
- formSquareRoot()
- addProduct(_:,_:)
Also missing are the generic initializers and comparisons whose implementation depends on having new Integer protocols.
The last remaining feature of SE-0067 is that while the basic operators +,-,*,/, etc are moved onto the FloatingPoint protocol, they are still required on the concrete types in order to disambiguate overloads. Fixing this seems to require either modifying the overload resolution rules or removing these operators from some other protocols. Or it might just require that someone smarter than me looks at the problem.
Passes all the existing tests (with the included changes). I'm working on additional tests for the new features.
Implements SE-0055: https://github.com/apple/swift-evolution/blob/master/proposals/0055-optional-unsafe-pointers.md
- Add NULL as an extra inhabitant of Builtin.RawPointer (currently
hardcoded to 0 rather than being target-dependent).
- Import non-object pointers as Optional/IUO when nullable/null_unspecified
(like everything else).
- Change the type checker's *-to-pointer conversions to handle a layer of
optional.
- Use 'AutoreleasingUnsafeMutablePointer<NSError?>?' as the type of error
parameters exported to Objective-C.
- Drop NilLiteralConvertible conformance for all pointer types.
- Update the standard library and then all the tests.
I've decided to leave this commit only updating existing tests; any new
tests will come in the following commits. (That may mean some additional
implementation work to follow.)
The other major piece that's missing here is migration. I'm hoping we get
a lot of that with Swift 1.1's work for optional object references, but
I still need to investigate.
This lets us eliminate the _getObjectiveCType() value witness, which
was working around the lack of proper type witness metadata in witness
tables. Boilerplate -= 1.