as a way to get more type information out of incorrect subexpressions. UnresolvedType
generally just propagates around the type system like a type variable:
- it magically conforms to all protocols
- it CSGens as an unconstrained type variable.
- it ASTPrints as _, just like a type variable.
The major difference is that UnresolvedType can be used outside the context of a
ConstraintSystem, which is useful for CSGen since it sets up several of them to
diagnose subexpressions w.r.t. their types.
For now, our use of this is extremely limited: when a closureexpr has no contextual
type available and its parameters are invalid, we wipe them out with UnresolvedType
(instead of the previous nulltype dance) to get ambiguities later on.
We also introduce a new FreeTypeVariableBinding::UnresolvedType approach for
constraint solving (and use this only in one place in CSDiags so far, to resolve
the callee of a CallExpr) which solves a system and rewrites any leftover type
variables as UnresolvedTypes. This allows us to get more precise information out,
for example, diagnosing:
func r22162441(lines: [String]) {
lines.map { line in line.fooBar() }
}
with: value of type 'String' has no member 'fooBar'
instead of: type of expression is ambiguous without more context
This improves a number of other diagnostics as well, but is just the infrastructural
stepping stone for greater things.
Swift SVN r31105
<rdar://problem/21364448> QoI: Poor error message for ambiguous subscript call
and improving several other subscript-related diagnostics.
Swift SVN r31082
diagnoseGeneralFailure to be named diagnoseConstraintFailure and change how
it works:
Now it ranks unresolved constraints in the system based on kind (e.g. whether
they are favored, member constraints ahead of conversion constraints, etc) and
then tries to emit a diagnostic for each failure kind one after another.
This means that if there are multiple failed conversion constraints, but one
is obviously satisfiable, that we continue on to diagnose the next one. This
clears up a swath of embarassing diagnostics and refixes:
<rdar://problem/19658691> QoI: Incorrect diagnostic for calling nonexistent members on literals
Swift SVN r31046
using it to improve closure diagnostics by inferring the types of otherwise
untyped closure paramdecls from this context information. This
resolves:
<rdar://problem/20371273> Type errors inside anonymous functions don't provide enough information
producing
error: binary operator '==' cannot be applied to operands of type 'Int' and 'UInt'
note: overloads for '==' exist with these partially matching parameter lists: (UInt, UInt), (Int, Int)
and:
<rdar://problem/20978044> QoI: Poor diagnostic when using an incorrect tuple element in a closure
producing:
error: value of tuple type '(Int, Int)' has no member '2'
and probably a lot more. We're still limited from getting things like "foo.map {...}" because
we're not doing type subsitutions from the base into the protocol extension member.
Swift SVN r30971
as a proper error, and change it to not be incorrect. Multi-statement
closures *only* need a return type if they cannot be inferred.
This fixes:
<rdar://problem/22086634> "multi-statement closures require an explicit return type" should be an error not a note
Swift SVN r30937
Take expression depth and preorder traversal index into account when
deciding which unresolved overload to complain about, rather than giving
up if there are two exprs with the same number of overloads. Don't
consider solutions with fixes when emitting ambiguous-system
diagnostics.
Swift SVN r30931
down to call argument lists that have more than one operand (heavily leveraging
"computeTupleShuffle"). This resolves a great number of QoI radars, including
things like:
<rdar://problem/19981782> QoI: poor diagnostic for call to memcmp with UInt length parameter
where we used to produce:
error: cannot invoke 'memcmp' with an argument list of type '([UInt8], [UInt8], UInt)'
return memcmp(left, right, UInt(left.count)) == 0
^
note: expected an argument list of type '(UnsafePointer<Void>, UnsafePointer<Void>, Int)'
but now we produce:
error: cannot convert value of type 'UInt' to expected argument type 'Int'
return memcmp(left, right, UInt(left.count)) == 0
^~~~~~~~~~~~~~~~
which is more "to the point"
Swift SVN r30930
noescape/throws bits to avoid confusing the issue with folks who don't know that you can
pass a nothrow closure to a throw parameter (which are going to be pervasive in the
stdlib)
Swift SVN r30912
argument. For now we start with some of the most simple cases: single argument
calls. This dramatically improves the QoI for error messages in argument lists,
typically turning a error+note combo into a single specific error message.
Some minor improvements coming (and also generalizing this to n-ary calls), but it
is nice that all the infrastructure is starting to come together...
Swift SVN r30905
...replacing it with the new, after passing API review!
* The lazy free function has become a property.
* Before we could extend protocols, we lacked a means for value types to
share implementations, and each new lazy algorithm had to be added to
each of up to four types: LazySequence, LazyForwardCollection,
LazyBidirectionalCollection, and LazyRandomAccessCollection. These
generic adapters hid the usual algorithms by defining their own
versions that returned new lazy generic adapters. Now users can extend
just one of two protocols to do the same thing: LazySequenceType or
LazyCollectionType.
* To avoid making the code duplication worse than it already was, the
generic adapters mentioned above were used to add the lazy generic
algorithms around simpler adapters such as MapSequence that just
provided the basic requirements of SequenceType by applying a
transformation to some base sequence, resulting in deeply nested
generic types as shown here. Now, MapSequence is an instance of
LazySequenceType (and is renamed LazyMapSequence), and thus transmits
laziness to its algorithms automatically.
* Documentation comments have been rewritten.
* The .array property was retired
* various renamings
* A bunch of Gyb files were retired.
Swift SVN r30902
fixing <rdar://problem/22020088> QoI: missing member diagnostic on optional gives worse error message than existential/bound generic/etc
Swift SVN r30844
- Produce more specific diagnostics relating to different kinds of invalid
- add a testcase, nfc
- Reimplement FailureDiagnosis::diagnoseGeneralMemberFailure in terms of
Not including r30787 means that we still generate bogus diagnostics like:
[1, 2, 3].doesntExist(0) // expected-error {{type 'Int2048' does not conform to protocol 'IntegerLiteralConvertible'}}
But it is an existing and separable problem from the issues addressed here.
Swift SVN r30819
r30787 causes our tests to time out; the other commits depend on r30787.
Revert "revert part of my previous patch."
Revert "Produce more specific diagnostics relating to different kinds of invalid"
Revert "add a testcase, nfc"
Revert "- Reimplement FailureDiagnosis::diagnoseGeneralMemberFailure in terms of"
Revert "Fix places in the constraint solver where it would give up once a single "
Swift SVN r30805
Replace the Lazy-based implementations with open-coded implementations based on the _UnsafePartiallyInitializedContiguousArrayBuffer builder from the previous commit, so that we have control over the early-exit flow when an error interrupts the operation.
Swift SVN r30794
performMemberLookup, eliminating a ton of duplicated logic, but keeping the
same general behavior.
- Now that r30787 landed, we can have diagnoseGeneralMemberFailure inform
clients when a member lookup fails due to referencing a candidate decl of
ErrorType (i.e, it is already invalid somehow). When this happens, there is
no reason to diagnose a problem, because the original issue has been diagnosed
and anything we produce now is just garbage.
The second point cleans up a bunch of bogus diagnostics in the testsuite, which are
*actually* due to upstream error that are already diagnosed.
Swift SVN r30789
constraint failed, leaving a bunch of other solvable constraints laying
around in the system as inactive.
This is a problem for diagnostics emission, because it turns around and
reaches into the constraint system for some inactive constraint, assuming
that anything left could not be solved. The constraint system attempted to
solve this by taking the first failure and putting it into the failedConstraint
with the intention of driving diagnostics, but just because it happened to fail
first in constraint-solver-worklist-order doesn't mean it is the most pertinent
one to diagnose.
Swift SVN r30787
"unavoidable failure" path, along with Failure::DoesNotHaveNonMutatingMember and
just doing some basic disambiguation in CSDiags.
This provides some benefits:
- Allows us to plug in much more specific diagnostics for the existing "only has
mutating members" diagnostic, including producing notes for why the base expr
isn't mutable (see e.g. test/Sema/immutability.swift diffs).
- Corrects issues where we'd drop full decl name info for selector references.
- Wordsmiths diagnostics to not complain about "values of type Foo.Type" instead
complaining about "type Foo"
- Where before we would diagnose all failures with "has no member named", we now
distinguish between when there is no member, and when you can't use it. When you
can't use it, you get a vauge "cannot use it" diagnostic, but...
- This provides an infrastructure for diagnosing other kinds of problems (e.g.
trying to use a private member or a static member from an instance).
- Improves a number of cases where failed type member constraints would produce uglier
diagnostics than a different constraint failure would.
- Resolves a number of rdars, e.g. (and probably others):
<rdar://problem/20294245> QoI: Error message mentions value rather than key for subscript
Swift SVN r30715
get the same wording, fixing <rdar://problem/21964599> Different diagnostics for the same issue
While I'm in the area, remove some dead code.
Swift SVN r30713
Before:
- protocol type 'Listener' does not conform to protocol 'Listener' because
'Listener' is not declared @objc
- protocol type 'Listener' does not conform to protocol 'Listener' because
'Listener' defines static methods
After:
- using 'Listener' as a concrete type conforming to protocol 'Listener' is
not supported
- 'Listener' cannot be used as a type conforming to protocol 'Listener'
because 'Listener' has static requirements
I removed the mention of '@objc' even though @objc protocols are more freely
self-conforming because it was confusing people working with pure Swift code.
Making this actually work for pure Swift protocols is tracked by
rdar://problem/21341337.
This also fixes a few cases where we were emitting this message even for
two completely unrelated protocols.
rdar://problem/21525618
Swift SVN r30698
conversion failures, making a bunch of diagnostics more specific and useful.
UnavoidableFailures can be very helpful, but they can also be the first constraint
failure that the system happened to come across... which is not always the most
meaningful one. CSDiag's expr processing machinery has a generally better way of
narrowing down which ones make the most sense.
Swift SVN r30647
directly into the diagnostics subsystem. This ensures a more consistent
treatment of type printing (e.g. catches a case where a diagnostic didn't
single quote the type) and gives these diagnostics access to "aka".
Swift SVN r30609
type check the subexpressions of a callexpr more consistently,
always checking the arguments independently (not just if one argument
is inout). This routes around issues handling tuples, and brings more
consistency to the experience. Factor this logic out and use it for
operators and subscripts as well.
Swift SVN r30583
independently (not just if one argument is inout). This routes around issues handling tuples,
and brings more consistency to the experience. Factor this logic out and use it for operators
and subscripts as well.
This improves a small collection of diagnostics, including the infamous:
// Infer incompatible type.
- func6(fn: {a,b->Float in 4.0 }) // expected-error {{cannot convert return expression of type 'Double' to expected return type 'Float'}}
+ func6(fn: {a,b->Float in 4.0 }) // expected-error {{cannot invoke 'func6' with an argument list of type '(fn: (_, _) -> Float)'}}
+ // expected-note @-1 {{expected an argument list of type '(fn: (Int, Int) -> Int)'}}
Swift SVN r30570
diagnose problems inside of them instead of punting on them completely.
This leads to substantially better error messages in many cases, fixing:
<rdar://problem/19870975> Incorrect diagnostic for failed member lookups within closures passed as arguments ("(_) -> _")
<rdar://problem/21883806> Bogus "'_' can only appear in a pattern or on the left side of an assignment" is back
<rdar://problem/20712541> QoI: Int/UInt mismatch produces useless error inside a block
and possibly others. We are not yet capitalizing on available type information we do
have about closure exprs, so there are some cases where we produce
"error: type of expression is ambiguous without more context"
when this isn't strictly true, but this is still a huge step forward.
Swift SVN r30547
detailed analysis of callees, which give us overload sets in more cases,
producing notes more consistently, and producing much better diagnostics
for the curried cases in test/Constraints/diagnostics.swift.
This also allows us to eliminate getCalleeName, which simplifies things
in CSDiags.
Swift SVN r30491
rationalizing how it handles members and curried functions, also paving
the way for future improvements. This implements the infrastructure but
keeps the functionality the same (the only functionality change is that
it works a bit better with vardecls of function type).
Swift SVN r30464
fixing:
<rdar://problem/20789423> Unclear diagnostic for multi-statement closure with no return type
<rdar://problem/21829141> BOGUS: unexpected trailing closure
<rdar://problem/21784170> Incongruous `unexpected trailing closure` error in `init` function which is cast and called without trailing closure.
Swift SVN r30443
we can start taking advantage of ambiguously typed subexpressions in CSDiags. We
start by validating the callee function of ApplyExprs, which substantially improves
our abilities to generate precise diagnostics about malformed calls.
This is the minimal introduction of this concept to CSDiags, a lot of refactoring
is yet to come, however, this is enough to resolve:
<rdar://problem/21080030> Bad diagnostic for invalid method call in boolean expression
<rdar://problem/21784170> Incongruous `unexpected trailing closure` error in `init` function which is cast and called without trailing closure.
one of the testcases from:
<rdar://problem/20789423> Unclear diagnostic for multi-statement closure with no return type
and a bunch of other places where we got weird "unexpected trailing closure"
diagnostics that made no sense. As usual, it is two steps forward and one step back,
as this exposed some other weird latent issues like:
<rdar://problem/21900971> QoI: Bogus conversion error in generics case
Swift SVN r30429
return statements, or a return statement with no operand.
Also, fix a special-case diagnostic about converting a return
expression to (1) only apply to converting the actual return
expression, not an arbitrary sub-expression, and (2) use the
actual operand and return types, not the drilled-down types
that caused the failure.
Swift SVN r30420
DiscardAssignmentExpr's, because they require context to typecheck anyway
and doing so triggers bogus errors about _ needing to be on the LHS of an
assignment. There is a correct way to fix this, but layers of issues need
to be peeled off before that can happen.
This fixes <rdar://problem/21883806> Bogus "'_' can only appear in a pattern or on the left side of an assignment" is back
but the new diagnostic that is revealed now that this bogus one is removed is
also really bad.
Swift SVN r30369
value, and use that to rank a problem as very specific. This required indicating a difference
between singular argument mismatch vs self mismatch and single-argument mismatch (which is very
specific) as being different from the argument list in general mismatching (which matters to
differentiate argument lists that contain a single argument).
These extra mechanics combine to fix <rdar://problem/21362748> [WWDC Lab] QoI: cannot subscript a value of type '[Int]?' with an index of type 'Int'
Swift SVN r30305
- Remove all uses of CleanupIllFormedExpressionRAII from this file, which are now
unnecessary since this is handled at a higher level.
- Stop splatting ErrorType in the diagnostics stuff. This was formerly needed to
indicate that a diagnostic is emitted, but is now handled other ways. Removing
this enables the type checker to produce other follow on warnings in some cases
(e.g. var should be marked let).
- Remove an arbitrary limitation on unop and binops that didn't print an overload
candidate set with one entry, leading to better consistency in diagnostics, now
that all the pieces are in place to make this not be super annoying.
Swift SVN r30084
facilities used by operators etc. This required a bunch of changes to make
the diagnostics changes strictly an improvement:
- Teach the new path about calls to TypeExprs.
- Teach evaluateCloseness some simple things about varargs.
- Make the generic diagnosis logic produce a better error when there is
exactly one match.
Overall, the resultant diagnostics are a step forward: we now produce candidate
set notes more uniformly, and the messages about some existing ones are
more specific. This is just another stepping stone towards progress though.
Swift SVN r30057