Also remove mention of the word “contextual” type from the diagnostic
that rewrites array literals into dictionary literals and scale back
the scope of the diagnostic. This method was catching and
mis-diagnosing too many errors that could better be handled by invalid
conversion diagnostics.
This was initially added to avoid "expression was too complex" in a
case where we were not previously reporting it for -swift-version 3
but should have been. In retrospect this seems misguided since
although we would not like to regress on "too complex" expressions, we
really don't want to silently continue in the cases where we decide an
expression is "too complex", but where we have a solution that we
could use. It's better to fail.
By default, end expression type checking after the elapsed process time
is more than 60 seconds for the current expression. This threshold can
be overridden by using -solver-expression-time-threshold=<seconds>.
Resolves rdar://problem/32859654
When this initializer is invoked with an integer literal, the expression
is ambiguous, since both UIn32 and Float are
RepresentableByIntegerLiteral.
Fixes: https://bugs.swift.org/browse/SR-5176
When matching inputs of a function type, be sure to
strip off ParenType sugar so that we don't end up
with ParenTypes in associated type witnesses.
This fixes various issues with SE-0110.
Fixes <rdar://problem/32214649>.
Properly diagnose cases of function/subscript argument tuple
structuring/destructuring related by not limited to SE-0110.
Resolves: rdar://problem/31973368
* Give Sequence a top-level Element, constrain Iterator to match
* Remove many instances of Iterator.
* Fixed various hard-coded tests
* XFAIL a few tests that need further investigation
* Change assoc type for arrayLiteralConvertible
* Mop up remaining "better expressed as a where clause" warnings
* Fix UnicodeDecoders prototype test
* Fix UIntBuffer
* Fix hard-coded Element identifier in CSDiag
* Fix up more tests
* Account for flatMap changes
A few things here:
1. I changed the .swift file to be a .sil file. This one is for Jordan. It
should also make the test not run into any issues due to swift level codegen
changes. So we should have an even more robust test.
2. I fixed the watchossimulator test by eliminating any dependency of this test
on an SDK. This is a pure compiler/target test. Just like the stdlib is not
necessary, SDKs are not necessary either.
This test is trying to confirm that memory usage is independent and that
follow-on expressions do not fail just because of the first failure, and
now we naturally fail on another expression because of the additional
memory used for -propagate-constraints.
Tweak the test to bump up the threshold and swap the order of
expressions so that the now-failing expression is first.
This only affects the textual output, but should still improve the
experience when we /do/ hit one of these LLVM errors. In addition to
showing up better in Xcode, it'll also give us a proper
PrettyStackTrace because of the call to abort() instead of exit(1).
(There's a bit of finger-crossing that the act of printing the
diagnostic doesn't cause more errors. I only tested the fallback
path a little.)
Specialize and improve the "downcast only unwraps optionals"
diagnostic to provide specific diagnostics + Fix-Its for the various
casts of forced cast, conditional cast, and "isa" check. Specifically:
* With a forced cast, customize the diagnostic. We still insert the
appropriate number of !'s, but now we remove the 'as! T' (if an
implicit conversion would suffice) or replace the 'as!' with 'as'
(if we still need a bridge)
* With a conditional cast, only emit a diagnostic if we're removing
just one level of optional. In such cases, we either have a no-op
(an implicit conversion would do) or we could just use 'as' to the
optional type, so emit a customized warning to do that. If we are
removing more than one level of optional, don't complain:
conditional casts can remove optionals. Add the appropriate Fix-Its
here.
* With an 'is' expression, only emit a diagnostic if we're removing
just one level of optional. In this case, the 'is' check is
equivalent to '!= nil'. Add a Fix-It for that.
Across the board, reduce the error to a warning. These are
semantically-well-formed casts, it's just that they could be written
better.
Fixes rdar://problem/28856049 and rdar://problem/22275685.
Previously, bridging conversions were handled as a form of "explicit
conversion" that was treated along the same path as normal
conversions in matchTypes(). Historically, this made some
sense---bridging was just another form of conversion---however, Swift
now separates out bridging into a different kind of conversion that is
available only via an explicit "as". This change accomplishes a few
things:
* Improves type inference around "as" coercions. We were incorrectly
inferring type variables of the "x" in "x as T" in cases where a
bridging conversion was expected, which cause some type inference
failures (e.g., the SR-3319 regression).
* Detangles checking for bridging conversions from other conversions,
so it's easier to isolate when we're applying a bridging
conversion.
* Explicitly handle optionals when dealing with bridging conversions,
addressing a number of problems with incorrect diagnostics, e.g.,
complains about "unrelated type" cast failures that would succeed at
runtime.
Addresses rdar://problem/29496775 / SR-3319 / SR-2365.
This fixes a usability regression with the removal of @noreturn
in Swift 3. Previously, it was legal to write this:
let callback: () -> Int = { fatalError() }
Now that the special @noreturn attribute has been replaced with
a Never type, the above fails to typecheck, because the expression
now has type 'Never', and we expect a value of type 'Int'.
Getting around this behavior requires ugly workarounds to force the
parser to treat the body as a statement rather than an expression;
for example,
let callback: () -> Int = { _ = (); fatalError() }
This patch generalized single-expression closures to allow
the 'Never to T' conversion. Note that this is rather narrow
in scope -- it only applies to closure *literals*, single-expression
ones at that, not arbitrary function *values*.
In fact, it is not really a conversion at all, but more of a
desugaring rule for single-expression closures. They can now be
summarized as follows:
- If the closure literal has contextual return type T and
the expression has Never type, the closure desugars as
{ _ = <expr> }, with no ReturnStmt.
- If the closure literal has contextual return type T for some
non-void type T, the closure desugars as { return <expr> };
the expression type must be convertible to T.
- If the closure literal has contextual return type Void, and
the expression has some non-Void type T, the closure
desugars as { _ = <expr>; return () }.
Fixes <rdar://problem/28269358> and <https://bugs.swift.org/browse/SR-2661>.
From the Swift documentation:
"If you define an optional variable without providing a default value,
the variable is automatically set to nil for you."