We need to deallocate the copy we created in the temporary location.
... and properly forward cleanup after inserting a convert_function
instruction. This didn't come up before because closures where consumed
by the ultimate apply in the chain and no compensating destroy was
neccessary.
SR-5441
rdar://33255593
Support for @noescape SILFunctionTypes.
These are the underlying SIL changes necessary to implement the new
closure capture ABI.
Note: This includes a change to function name mangling that
primarily affects reabstraction thunks.
The new ABI will allow stack allocation of non-escaping closures as a
simple optimization.
The new ABI, and the stack allocation optimization, also require
closure context to be @guaranteed. That will be implemented as the
next step.
Many SIL passes pattern match partial_apply sequences. These all
needed to be fixed to handle the convert_function that SILGen now
emits. The conversion is now needed whenever a function declaration,
which has an escaping type, is passed into a @NoEscape argument.
In addition to supporting new SIL patterns, some optimizations like
inlining and SIL combine are now stronger which could perturb some
benchmark results.
These underlying SIL changes should be merged now to avoid conflicting
with other work. Minor benchmark discrepancies can be investigated as part of
the stack-allocation work.
* Add a noescape attribute to SILFunctionType.
And set this attribute correctly when lowering formal function types to SILFunctionTypes based on @escaping.
This will allow stack allocation of closures, and unblock a related ABI change.
* Flip the polarity on @noescape on SILFunctionType and clarify that
we don't default it.
* Emit withoutActuallyEscaping using a convert_function instruction.
It might be better to use a specialized instruction here, but I'll leave that up to Andy.
Andy: And I'll leave that to Arnold who is implementing SIL support for guaranteed ownership of thick function types.
* Fix SILGen and SIL Parsing.
* Fix the LoadableByAddress pass.
* Fix ClosureSpecializer.
* Fix performance inliner constant propagation.
* Fix the PartialApplyCombiner.
* Adjust SILFunctionType for thunks.
* Add mangling for @noescape/@escaping.
* Fix test cases for @noescape attribute, mangling, convert_function, etc.
* Fix exclusivity test cases.
* Fix AccessEnforcement.
* Fix SILCombine of convert_function -> apply.
* Fix ObjC bridging thunks.
* Various MandatoryInlining fixes.
* Fix SILCombine optimizeApplyOfConvertFunction.
* Fix more test cases after merging (again).
* Fix ClosureSpecializer. Hande convert_function cloning.
Be conservative when combining convert_function. Most of our code doesn't know
how to deal with function type mismatches yet.
* Fix MandatoryInlining.
Be conservative with function conversion. The inliner does not yet know how to
cast arguments or convert between throwing forms.
* Fix PartialApplyCombiner.
The counterparts are:
UnownedRetain -> CopyValue.
UnownedRelease -> DestroyValue.
StrongRetainUnowned -> CopyUnownedValue.
I thought I hit all of these already. When I was fixing some DI stuff I realized
that I missed a few cases in SILGenLValue.cpp. To make sure we do not regress, I
added some verifier checks to make sure these instructions can only be used in
non-ownership sil.
rdar://31880847
I put in a simple fixup pass (MarkUninitializedFixup) for staging purposes. I
don't expect it to be in tree long. I just did not feel comfortable fixing up in
1 commit all of the passes up to DI.
rdar://31521023
Without this, CSGen/CSSimplify and CSApply may have differing
opinions about whether e.g. a let property is settable, which
can lead to invalid ASTs.
Arguably, a better fix would be to remove the dependency on the
exact nested DC. For example, we could treat lets as settable
in all contexts and then just complain later about invalid
attempts to set them. Or we could change CSApply to directly
use the information it already has about how an l-value is used,
rather than trying to figure out whether it *might* be getting set.
But somehow, tracking a new piece of information through the
entire constraint system seems to be the more minimal change.
Fixes rdar://29810997.
Officially kick SILBoxType over to be "nominal" in its layout, with generic layouts structurally parameterized only by formal types. Change SIL to lower a capture to a nongeneric box when possible, or a box capturing the enclosing generic context when necessary.
Use a syntax that declares the layout's generic parameters and fields,
followed by the generic arguments to apply to the layout:
{ var Int, let String } // A concrete box layout with a mutable Int
// and immutable String field
<T, U> { var T, let U } <Int, String> // A generic box layout,
// applied to Int and String
// arguments
Keep in mind that these are approximations that will not impact correctness
since in all cases I ensured that the SIL will be the same after the
OwnershipModelEliminator has run. The cases that I was unsure of I commented
with SEMANTIC ARC TODO. Once we have the verifier any confusion that may have
occurred here will be dealt with.
rdar://28685236
This ensures that ownership is properly propagated forward through the use-def
graph.
This was the work that was stymied by issues relating to SILBuilder performing
local ARC dataflow. I ripped out that local dataflow in 6f4e2ab and added a
cheap ARC guaranteed dataflow pass that performs the same optimization.
Also in the process of doing this work, I found that there were many SILGen
tests that were either pattern matching in the wrong functions or had wrong
CHECK lines (for instance CHECK_NEXT). I fixed all of these issues and also
expanded many of the tests so that they verify ownership. The only work I left
for a future PR is that there are certain places in tests where we are using the
projection from an original value, instead of a copy. I marked those with a
message SEMANTIC ARC TODO so that they are easy to find.
rdar://28685236
radar rdar://problem/28434323
SILGen has no reason to insert shadow copies for inout parameters any more. They cannot be captured. We still emit these copies. Sometimes deshadowing removes them, but sometimes it does not.
In this PR we just avoid emitting the copies and remove the deshadowing pass.
This PR chery-picked some of @dduan work and built on top of it.
Implements part of SE-0110. Single argument in closures will not be accepted if
there exists explicit type with a number of arguments that's not 1.
```swift
let f: (Int, Int) -> Void = { x in } // this is now an error
```
Note there's a second part of SE-0110 which could be considered additive,
which says one must add an extra pair of parens to specify a single arugment
type that is a tuple:
```swift
let g ((Int, Int)) -> Void = { y in } // y should have type (Int, Int)
```
This patch does not implement that part.
Allow 'static' (or, in classes, final 'class') operators to be
declared within types and extensions thereof. Within protocols,
require operators to be marked 'static'. Use a warning with a Fix-It
to stage this in, so we don't break the world's code.
Protocol conformance checking already seems to work, so add some tests
for that. Update a pile of tests and the standard library to include
the required 'static' keywords.
There is an amusing name-mangling change here. Global operators were
getting marked as 'static' (for silly reasons), so their mangled names
had the 'Z' modifier for static methods, even though this doesn't make
sense. Now, operators within types and extensions need to be 'static'
as written.
Otherwise, we can miss that 'self' has a generic type when accessed
via a 'super' call if the type of 'super' is concrete.
This is a regression from a patch series to allow C function pointers
to be formed from closures in generic contexts -- basically, the
check was not conservative enough, and in this case, it would
conclude the closure did not capture the generic signature when
in reality it did:
533f42dd2f
Fixes <rdar://problem/25439564>.
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.
The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results. It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.
The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*. The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list. The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.
A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple. It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.
Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction. It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.
When the nearest implementation of a superclass's implementation of a
method is in the same module, eagerly emit a direct call to the method
instead of relying on the devirtualizer for these, since this is a very
lightweight check and can make -Onone builds faster.
And use project_box to get to the address value.
SILGen now generates a project_box for each alloc_box.
And IRGen re-uses the address value from the alloc_box if the operand of project_box is an alloc_box.
This lets the generated code be the same as before.
Other than that most changes of this (quite large) commit are straightforward.