This replaces the '[volatile]' flag. Now, class_method and
super_method are only used for vtable dispatch.
The witness_method instruction is still overloaded for use
with both ObjC protocol requirements and Swift protocol
requirements; the next step is to make it only mean the
latter, also using objc_method for ObjC protocol calls.
This will let me treat self during delegating initialization as an lvalue and
thus be emitted later without a scope. Thus I can simplify delegating
initialization slightly and land my argument scoping work.
rdar://33358110
Consider a class hierarchy like the following:
class Base {
func m1() {}
func m2() {}
}
class Derived : Base {
override func m2() {}
func m3() {}
}
The SIL vtable for 'Derived' now records that the entry for m1
is inherited, the entry for m2 is an override, and the entry
for m3 is a new entry:
sil_vtable Derived {
#Base.m1!1: (Base) -> () -> () : _T01a4BaseC2m1yyF [inherited]
#Base.m2!1: (Base) -> () -> () : _T01a7DerivedC2m2yyF [override]
#Derived.m3!1: (Derived) -> () -> () : _T01a7DerivedC2m3yyF
}
This additional information will allow IRGen to emit the vtable
for Derived resiliently, without referencing the symbol for
the inherited method m1() directly.
I tried to do a more complex fix, but it will take more time than I have now.
This change at least ensures that we maintain correctness both in terms of the
super types and in terms of the semantic sil verifier.
rdar://31880847
Uncovered by Slava's bcbd1d2, which infers 'dynamic' in more places,
but this was always a problem when an initializer was /explicitly/
marked 'dynamic'.
rdar://problem/32026930
The goal here is to make the short demangling as short and readable as possible, also at the cost of omitting some information.
The assumption is that whenever the short demangling is displayed, there is a way for the user to also get the full demangled name if needed.
*) omit <where ...> because it does not give useful information anyway
Deserializer.deserialize<A where ...> () throws -> [A]
--> Deserializer.deserialize<A> () throws -> [A]
*) for multiple specialized functions only emit a single “specialized”
specialized specialized Constructible.create(A.Element) -> Constructible<A>
--> specialized Constructible.create(A.Element) -> Constructible<A>
*) Don’t print function argument types:
foo(Int, Double, named: Int)
--> foo(_:_:named:)
This is a trade-off, because it can lead to ambiguity if there are overloads with different types.
*) make contexts of closures, local functions, etc. more readable by using “<a> in <b>” syntax
This is also done for the full and not only for the simplified demangling.
Renderer.(renderInlines([Inline]) -> String).(closure #1)
--> closure #1 in Renderer.renderInlines
*) change spacing, so that it matches our coding style:
foo <A> (x : A)
--> foo<A>(x: A)
Overriding of members introduced in class extensions depends on the
presence of an Objective-C entrypoint. When we override such a
member---which used the deprecated @objc inference rule and occurs in
a class extension, where non-@objc methods currently cannot be
overridden---warn about the use of explicit @objc.
We used to give witness thunks public linkage if the
conforming type and the protocol are public.
This is completely unnecessary. If the conformance is
fragile, the thunk should be [shared] [serialized],
allowing the thunk to be serialized into callers after
devirtualization.
Otherwise for private protocols or resilient modules,
witness thunks can just always be private.
This should reduce the size of compiled binaries.
There are two other mildly interesting consequences:
1) In the bridged cast tests, we now inline the witness
thunks from the bridgeable conformances, which removes
one level of indirection.
2) This uncovered a flaw in our accessibility checking
model. Usually, we reject a witness that is less
visible than the protocol; however, we fail to
reject it in the case that it comes from an
extension.
This is because members of an extension can be
declared 'public' even if the extended type is not
public, and it appears that in this case the 'public'
keyword has no effect.
I would prefer it if a) 'public' generated a warning
here, and b) the conformance also generated a warning.
In Swift 4 mode, we could then make this kind of
sillyness into an error. But for now, live with the
broken behavior, and add a test to exercise it to ensure
we don't crash.
There are other places where this "allow public but
ignore it, kinda, except respect it in some places"
behavior causes problems. I don't know if it was intentional
or just emergent behavior from general messiness in Sema.
3) In the TBD code, there is one less 'failure' because now
that witness thunks are no longer public, TBDGen does not
need to reason about them (except for the case #2 above,
which will probably require a similar workaround in TBDGen
as what I put into SILGen).
This fixes a crash when referencing partially-applied methods
from @_inlineable functions.
Also, curry thunks for private methods do not need shared
linkage; private is sufficient.
Simply mangling the derived method is no longer sufficient. Now also
mangle the base method, so that eventually we handle this sort of
scenario:
class Base {
// introduces: Base.method
func method(_: Int, _: Int) {}
}
class First : Base {
// overrides: Base.method
// introduces: First.method
override func method(_: Int?, _: Int) {}
}
class Second : First {
// overrides: Base.method, First.method
// introduces: Second.method
override func method(_: Int?, _: Int?) {}
}
Here, the override of Base.method by Second.method and the
override of First.method by Second.method require distinct
manglings even though the derived method (Second.method) is
the same in both cases.
Note that while the new mangling is longer, vtable thunks are
always emitted with private linkage, so with the exception of
the standard library which is built with -sil-serialize-all
they will not affect the size of dylibs.
The standard library itself has very few classes so it doesn't
matter there either.
This patch doesn't actually add any support to introduce new
vtable entries for methods that override; this is coming up
next.
This change simplifies some code and incidentally fixes a curious
corner case. We allow dynamic overrides of non-dynamic methods,
but we did not account for the fact that the override could have
a different calling convention.
This changes the order in which declarations are emitted.
It also means we no longer emit a vtable entry for the
materializeForSet of dynamic storage. Neither of these are
intended to have any functional effect.
We had some non-deterministic behavior where depending on
validation order, synthesized accessors would end up in
different places because we would sometimes just add them
at the end of the member list.
Now add the getter right after the storage, the setter
right after the getter and the materializeForSet right
after the setter.
This changes some test output where the declaration order
did not make sense before but should otherwise have no
functional effect.
Instead of appending a character for each substitution, we now prefix the substitution with the repeat count, e.g.
AbbbbB -> A5B
The same is done for known-type substitutions, e.g.
SiSiSi -> S3i
This significantly shrinks mangled names which contain large lists of the same type, like
func foo(_ x: (Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int, Int))
rdar://problem/30707433
In 74d979f0ac, the policy was changed
so that only value type accessors are ever marked transparent, and
not class accessors.
This was intended to fix a bug where inlining an accessor of an
Objective-C-derived class across module boundaries caused a linker
failure because the accessor referenced a field offset variable,
which has hidden visibility.
However, this also caused a performance regression for Swift native
classes. Bring back the old behavior for Swift native classes in
non-resilient modules.
Fixes <rdar://problem/29884727>.
Textual SIL was sometimes ambiguous when SILDeclRefs were used, because the textual representation of SILDeclRefs was the same for functions that have the same name, but different signatures.
Textual SIL was sometimes ambiguous when SILDeclRefs were used, because the textual representation of SILDeclRefs was the same for functions that have the same name, but different signatures.
For this we need to store the linkage of the “original” method implementation in the vtable.
Otherwise DeadFunctionElimination thinks that the method implementation is not public but private (which is the linkage of the thunk).
The big part of this change is to extend SILVTable to store the linkage (+ serialization, printing, etc.).
fixes rdar://problem/29841635
This ensures that ownership is properly propagated forward through the use-def
graph.
This was the work that was stymied by issues relating to SILBuilder performing
local ARC dataflow. I ripped out that local dataflow in 6f4e2ab and added a
cheap ARC guaranteed dataflow pass that performs the same optimization.
Also in the process of doing this work, I found that there were many SILGen
tests that were either pattern matching in the wrong functions or had wrong
CHECK lines (for instance CHECK_NEXT). I fixed all of these issues and also
expanded many of the tests so that they verify ownership. The only work I left
for a future PR is that there are certain places in tests where we are using the
projection from an original value, instead of a copy. I marked those with a
message SEMANTIC ARC TODO so that they are easy to find.
rdar://28685236
This is a squash of the following commits:
* [SE-0054] Import function pointer arg, return types, typedefs as optional
IUOs are only allowed on function decl arguments and return types, so
don't import typedefs or function pointer args or return types as IUO.
* [SE-0054] Only allow IUOs in function arg and result type.
When validating a TypeRepr, raise a diagnostic if an IUO is found
anywhere other thn the top level or as a function parameter or return
tpye.
* [SE-0054] Disable inference of IUOs by default
When considering a constraint of the form '$T1 is convertible to T!',
generate potential bindings 'T' and 'T?' for $T1, but not 'T!'. This
prevents variables without explicit type information from ending up with
IUO type. It also prevents implicit instantiation of functions and types
with IUO type arguments.
* [SE-0054] Remove the -disable-infer-iuos flag.
* Add nonnull annotations to ObjectiveCTests.h in benchmark suite.
This reverts commit 052d2d0a69.
The only actual issue with the original change was a missing change to
the UIApplicationMain SILGen test, which needs to build SILGen
overlays to execute properly; -enable-source-import doesn't suffice.
Introduce a new entrypoint to _ObjectiveCBridgeable,
_unconditionallyBridgeFromObjectiveC, which handles unconditional
bridging from an optional Objective-C object (e.g., an NSString) to
its bridged Swift type. Use it in SILGen to perform NSString -> String
bridging rather than the custom entry point.
Another small step toward generalized bridging.
For long names this is easier to read and in most cases the omitted information can be seen in the actual SIL code.
With the option -Xllvm -sil-full-demangle the old behavior can be restored.