Keep in mind that these are approximations that will not impact correctness
since in all cases I ensured that the SIL will be the same after the
OwnershipModelEliminator has run. The cases that I was unsure of I commented
with SEMANTIC ARC TODO. Once we have the verifier any confusion that may have
occurred here will be dealt with.
rdar://28685236
What I've implemented here deviates from the current proposal text
in the following ways:
- I had to introduce a FunctionArrowPrecedence to capture the parsing
of -> in expression contexts.
- I found it convenient to continue to model the assignment property
explicitly.
- The comparison and casting operators have historically been
non-associative; I have chosen to preserve that, since I don't
think this proposal intended to change it.
- This uses the precedence group names and higherThan/lowerThan
as agreed in discussion.
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.
The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results. It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.
The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*. The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list. The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.
A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple. It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.
Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction. It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.
While making some changes that resulted in materializeForSet getting
synthesized more often, I noticed that some tests started failing
because they could not find the Optional type, which appears in the
type of materializeForSet. Fix these tests by defining an Optional
and passing in '-module-name Swift' so that we can find it.
This feels a little bit gross, but Dmitri says it is preferrable to
importing Swift from a test.
Having a separate address and container value returned from alloc_stack is not really needed in SIL.
Even if they differ we have both addresses available during IRGen, because a dealloc_stack is always dominated by the corresponding alloc_stack in the same function.
Although this commit quite large, most changes are trivial. The largest non-trivial change is in IRGenSIL.
This commit is a NFC regarding the generated code. Even the generated SIL is the same (except removed #0, #1 and @local_storage).
Now that we open-code enum construction, enum constructor entry points are
only needed when they are partially-applied, which is a rare case. So we
treat them like curry thunks and only emit them as needed.
The main consequence of this is that enum case constructors are no longer
part of our ABI.
To avoid a regression in the code path for diagnosing infinite value types,
force type lowering to walk a type when emitting its declaration, even if
there are no other references to the type in the program (which is now the
case for public enums which are otherwise not used).
Also XFAIL a DebugInfo test since it is not clear to me what the test does
or how to fix it. The obvious change of adding references to the enum
case constructor function to force it to be emitted did not work.
Sema models enum case constructors as ApplyExprs. Formerly SILGen
would emit a case constructor function for each enum case,
constructing the enum value in the constructor body. ApplyExprs
of case constructors were lowered like any other call.
This is nice and straightforward but has several downsides:
1) Case constructor functions are very repetitive and trivial,
in particular for no-payload cases. They were declared
@_transparent and so were inlined at call sites, but for
public enums they still had to be emitted into the final
object file.
2) If the enum is generic, the substituted type may be loadable
even if the unsubstituted type is not, but since the case
constructor is polymorphic we had to allocate stack buffers
anyway, to pass the payload and result at the right abstration
level. This meant that for example Optional.Some(foo)
generated less-efficient SIL than the equivalent implicit
conversion.
3) We were missing out on peephole optimization opportunities when
the payload of an indirect case or address-only enum could be
emitted directly into the destination buffer, avoiding a copy.
One example would be when an enum payload is the result of
calling a function that returns an address-only value indirectly.
It appears we had unnecessary copies and takes even with -O.
Again, optional implicit conversions special-cased this.
This patch implements a new approach where a fully-formed call to
a element constructor is handled via a special code path where
the 'enum' or 'init_enum_data_addr' / 'inject_enum_addr'
instructions are emitted directly. These always work on the
substituted type, avoiding stack allocations unless needed.
An additional optimization is that the ArgumentSource abstraction
is used to delay evaluation of the payload argument until the
indirect box or address-only payload was set up.
If a element constructor is partially applied, we still emit a
reference to the constant as before.
It may seem like case constructor functions are at least useful
for resilience, but case constructors are transparent, so making
them resilient would require a new "transparent but only in this
module, and don't serialize the SIL body" declaration.
@inline(always) is almost what we need here, but this affect
mandatory inlining, only the optimizer, so it would be a
regression for non-resilient enums, or usages of resilient enums
in the current module.
A better approach is to construct resilient enums with a new
destructiveInjectEnumTag value witness function, which is
coming soon, and the general improvement from that approach
is what prompted this patch.
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
Now the SILLinkage for functions and global variables is according to the swift visibility (private, internal or public).
In addition, the fact whether a function or global variable is considered as fragile, is kept in a separate flag at SIL level.
Previously the linkage was used for this (e.g. no inlining of less visible functions to more visible functions). But it had no effect,
because everything was public anyway.
For now this isFragile-flag is set for public transparent functions and for everything if a module is compiled with -sil-serialize-all,
i.e. for the stdlib.
For details see <rdar://problem/18201785> Set SILLinkage correctly and better handling of fragile functions.
The benefits of this change are:
*) Enable to eliminate unused private and internal functions
*) It should be possible now to use private in the stdlib
*) The symbol linkage is as one would expect (previously almost all symbols were public).
More details:
Specializations from fragile functions (e.g. from the stdlib) now get linkonce_odr,default
linkage instead of linkonce_odr,hidden, i.e. they have public visibility.
The reason is: if such a function is called from another fragile function (in the same module),
then it has to be visible from a third module, in case the fragile caller is inlined but not
the specialized function.
I had to update lots of test files, because many CHECK-LABEL lines include the linkage, which has changed.
The -sil-serialize-all option is now handled at SILGen and not at the Serializer.
This means that test files in sil format which are compiled with -sil-serialize-all
must have the [fragile] attribute set for all functions and globals.
The -disable-access-control option doesn't help anymore if the accessed module is not compiled
with -sil-serialize-all, because the linker will complain about unresolved symbols.
A final note: I tried to consider all the implications of this change, but it's not a low-risk change.
If you have any comments, please let me know.
Swift SVN r22215
We were leaking dealloc_stacks when the enum constructor had to create temporary allocations in order to implode address-only tuple payloads.
Swift SVN r8971