We can only do this for two reasons:
1. There is a code path that should have gone through the non-exclusively
borrowed self entrypoints, but they were not implemented.
2. We are trying to access self for an argument.
By copying the value, we preserve invariants around ownership and also make it
easy for DI to catch 2 and not blow up in the case of 1. It is better to error
in DI incorrectly, than to hit an unreachable (especially since in non-assert
builds, we don't trap at unreachables and just continue to the next function in
the text segment).
SR-5682
rdar://35402738
Again, since there's no distinction between an enum initializer that
delegates to 'self.init' from one that assigns to 'self', we can remove
the special handling of enum initializers in the 'root self' case.
Now, 'root self' is only used for designated initializers in classes
with no superclass, and struct initializers that perform memberwise
initialization of stored properties.
This regresses some diagnostics, because the logic for delegating
init diagnostics is missing some heuristics present in the root self
case. I will fix this in a subsequent patch.
Previously protocol extension initializers which called 'self.init' were
considered 'delegating', and ones that assign to 'self' were considered
'root'.
Both have the same SIL lowering so the distinction is not useful, and
removing it simplifies some code.
*NOTE* DefiniteInit is still running /after/ ownership is stripped. This is just
making sure that the code we are producing can actually pass the verifier.
rdar://31521023
We cannot model a type variable bound to the ExtInfo of a function
type in the constraint solver, which means we have a hard time
propagating noescape-ness in some cases.
Fixes <rdar://problem/31910280> and <rdar://problem/32409133>.
In all cases the DeclCtx field was supposed to be initialized from the
SILLocation of the function, so we can save one pointer per
SILFunction.
There is one test case change where a different (more precise)
diagnostic is being generated after this change.
Emit a warning for optionals that are implicitly converted to Any, and
add fixits giving options to:
- Add '??' with a default value after
- Force-unwrap the optional with '!'
- Explicitly cast to 'as Any' to silence the warning
This covers diagnostics aspect of SE-0140.
rdar://problem/28196843
Previously, we were only able to detect factory initializers
dispatched through class_method. This didn't work for
factory initializers defined in protocol extensions.
The end result would be that we would strong_release an
uninitialized class instance, which could cause crashes.
Fix DI to correctly release the old instance using
dealloc_partial_ref instead.
Fixes <rdar://problem/27713221>.
along with recent policy changes:
- For expression types that are not specifically handled, make sure to
produce a general "unused value" warning, catching a bunch of unused
values in the testsuite.
- For unused operator results, diagnose them as uses of the operator
instead of "calls".
- For calls, mutter the type of the result for greater specificity.
- For initializers, mutter the type of the initialized value.
- Look through OpenExistentialExpr's so we can handle protocol member
references propertly.
- Look through several other expressions so we handle @discardableResult
better.
In failable initializers the "return from initializer without initializing all stored properties" (resp. "return from enum initializer method without storing to 'self'" for enums) diagnostic is now reported at the early return instead of the end of the initializer.
its fields are initialized. Before:
t.swift:18:24: error: variable 'self.B' captured by a closure before being initialized
after:
t.swift:19:24: error: 'self' captured by a closure before all members were initialized
self.A.withCString { cString -> () in
^
t.swift:14:7: note: 'self.B' not initialized
var B: Int
^
This drives home the fact that 'self' is being captured here, not the individual
properties.
Partial applications of a root self value are an escape point, not a load. This
improves the diagnostic in this case from:
t.swift:18:24: error: variable 'self.B' used before being initialized
self.A.withCString { cString -> () in
^
to:
t.swift:18:24: error: variable 'self.B' captured by a closure before being initialized
self.A.withCString { cString -> () in
^
When a root class delegates to a non-class-bound protocol method, the self value
gets wrapped up in a SIL alloc_stack so it can be passed by address. Recognize
that the store involved is doing this, so we can provide a more specific diagnostic.
Before this, we produced:
variable 'self.x' used before being initialized
Now we produce:
error: use of 'self' in method call 'getg' before all stored properties are initialized
note: 'self.x' not initialized