When enumerating requirements, always use the archetype anchors to
express requirements. Unlike "representatives", which are simply there
to maintain the union-find data structure used to track equivalence
classes of potential archetypes, archetype anchors are the
ABI-stable canonical types within a fully-formed generic signature.
The test case churn comes from two places. First, while
representatives are *often* the same as the archetype anchors, they
aren't *always* the same. Where they differ, we'll see a change in
both the printed generic signature and, therefore, it's
mangling.
Additionally, requirement inference now takes much greater
care to make sure that the first types in the requirement follow
archetype anchor ordering, so actual conformance requirements occur in
the requirement list at the archetype anchor---not at the first type
that is equivalent to the anchor---which permits the simplification in
IRGen's emission of polymorphic arguments.
Piggybacks some resilience diagnostics onto the availability
checking code.
Public and versioned functions with inlineable bodies can only
reference other public and internal entities, since the SIL code
for the function body is serialized and stored as part of the
module.
This includes @_transparent functions, @_inlineable functions,
accessors for @_inlineable storage, @inline(__always) functions,
and in Swift 4 mode, default argument expressions.
The new checks are a source-breaking change, however we don't
guarantee source compatibility for underscored attributes.
The new ABI and tests for the default argument model will come in
subsequent commits.
Like c70a5a5d67, but for deserialization. This was causing assertion
failures during the merge-module step of building a module that had a
private/fileprivate protocol with an associated type because the
associated type wouldn't have a valid private discriminator (because
the original source file didn't consider it to be private).
https://bugs.swift.org/browse/SR-2576
The handling of SIL box types in both deserialization and in the SIL
parser assumed that the number of substitutions in the box type would
be equivalent to the number of generic parameters. This assumption is
incorrect when the generic signature adds requirements to an
associated type.
Fixes rdar://problem/29740594.
This "fixes" two issues:
- The name of a non-public typealias would leak into the public
interface if the extension had any public members.
- A common pattern of defining a platform-specific typealias for an
imported class and then extending that type would lead to
circularity when trying to deserialize the typealias. We /shouldn't/
be loading the extension at that point, but fixing that would be
much harder.
The "right" answer is to (a) check that the typealias is public if the
extension has any public members, and (b) somehow ensure there is no
circularity issue (either by not importing the extension as a result
of importing the typealias, or by the extension being able to set its
sugared base type later).
rdar://problem/29694978
Use a syntax that declares the layout's generic parameters and fields,
followed by the generic arguments to apply to the layout:
{ var Int, let String } // A concrete box layout with a mutable Int
// and immutable String field
<T, U> { var T, let U } <Int, String> // A generic box layout,
// applied to Int and String
// arguments
Store leading a trailing "trivia" around a token, such as whitespace,
comments, doc comments, and escaping backticks. These are syntactically
important for preserving formatting when printing ASTs but don't
semantically affect the program.
Tokens take all trailing trivia up to, but not including, the next
newline. This is important to maintain checks that statements without
semicolon separators start on a new line, among other things.
Trivia are now data attached to the ends of tokens, not tokens
themselves.
Create a new Syntax sublibrary for upcoming immutable, persistent,
thread-safe ASTs, which will contain only the syntactic information
about source structure, as well as for generating new source code, and
structural editing. Proactively move swift::Token into there.
Since this patch is getting a bit large, a token fuzzer which checks
for round-trip equivlence with the workflow:
fuzzer => token stream => file1
=> Lexer => token stream => file 2 => diff(file1, file2)
Will arrive in a subsequent commit.
This patch does not change the grammar.
Keep in mind that these are approximations that will not impact correctness
since in all cases I ensured that the SIL will be the same after the
OwnershipModelEliminator has run. The cases that I was unsure of I commented
with SEMANTIC ARC TODO. Once we have the verifier any confusion that may have
occurred here will be dealt with.
rdar://28685236
Recently I changed the ArchetypeBuilder is minimize requirements
in generic signatures. However substitution lists still contained
all recursively-expanded nested types.
With recursive conformances, this list becomes potentially
infinite, so we can't expand it out anymore. Also, it is just
a waste of time to have them there.
This ensures that we can write FileCheck patterns that match the end of sil
functions. Just using a FileCheck pattern against a brace is not sufficient in
the context of checking the SIL emitted by SILGen. This is because we could match a
different function's body and match the closing brace against the other
function's end brace.
With this change, one can be specific by checking:
// CHECK: } {{.*}} end sil function '<mangled name>'
The inspiration for this change is rdar://28685236. While updating SILGen tests
for that I have found many instances of SILGen tests pattern matching against
the wrong function bodies. This change will allow me to eliminate these problems
robustly.
rdar://29077869
Quiz: What does @_transparent on an extension actually *do*?
1) Make all members @_transparent?
2) Allow your members to be @_transparent?
3) Some other magical effect that has nothing to do with members?
The correct answer is 1), however a few places in the stdlib defined
a @_transparent extension and then proceeded to make some or all members
also @_transparent, and in a couple of places we defined a @_transparent
extension with no members at all.
To avoid cargo culting and confusion, remove the ability to make
@_transparent extensions altogether, and force usages to be explicit.
This lets us get to the goal of +0 guaranteed closure contexts. NFC yet, just add the under-the-hood ability for partial_apply instructions producing callee-guaranteed closures to be parsed, printed, and serialized.
It's the same thing as for alloc_ref: the optional [tail_elems ...] attribute specify the tail elements to allocate.
For details see docs/SIL.rst
This feature is needed so that we can allocate a MangedBuffer with alloc_ref_dynamic.
The ManagedBuffer.create() function uses the dynamic self type to create the buffer instance.
There was a ton of complicated logic here to work around
two problems:
- Same-type constraints were not represented properly in
RequirementReprs, requiring us to store them in strong form
and parse them out when printing type interfaces.
- The TypeBase::getAllGenericArgs() method did not do the
right thing for members of protocols and protocol extensions,
and so instead of simple calls to Type::subst(), we had
an elaborate 'ArchetypeTransformer' abstraction repeated
in two places.
Rewrite this code to use GenericSignatures and
GenericFunctionType instead of old-school GenericParamLists
and PolymorphicFunctionType.
This changes the code completion and AST printer output
slightly. A few of the changes are actually fixes for cases
where the old code didn't handle substitutions properly.
A few others are subjective, for example a generic parameter
list of the form <T : Proto> now prints as <T where T : Proto>.
We can add heuristics to make the output whatever we want
here; the important thing is that now we're using modern
abstractions.
From the Swift documentation:
"If you define an optional variable without providing a default value,
the variable is automatically set to nil for you."
Those builtins are: allocWithTailElems_<n>, getTailAddr and projectTailElems
Also rename the "gep" builtin, which indexes raw bytes, to "gepRaw" and add a new "gep" builtin to index in a typed array.
The new instructions are: ref_tail_addr, tail_addr and a new attribute [ tail_elems ] for alloc_ref.
For details see docs/SIL.rst
As these new instructions are not generated so far, this is a NFC.
Those builtins are: allocWithTailElems_<n>, getTailAddr and projectTailElems
Also rename the "gep" builtin, which indexes raw bytes, to "gepRaw" and add a new "gep" builtin to index in a typed array.
The new instructions are: ref_tail_addr, tail_addr and a new attribute [ tail_elems ] for alloc_ref.
For details see docs/SIL.rst
As these new instructions are not generated so far, this is a NFC.
Now that the previous patches have shaken out implicit assumptions
about the order of generic requirements and substitutions, we can
make a more radical change, dropping redundant protocol requirements
when building the original generic signature.
This means that the canonical ordering and minimization that we
used to only perform when building the mangling signature is done
all of the time, and hence getCanonicalManglingSignature() can go
away.
Usages now either call getCanonicalSignature(), or operate on the
original signature directly.
Instead of walking over PotentialArchetypes representatives directly
and using a separate list to record same-type constraints, just use
enumerateRequirements() and check the RequirementSource to drop
redundant requirements.
This means getGenericSignature() and getCanonicalManglingSignature()
can share the same logic for collecting requirements; the only
differences are the following:
- both drop requirements from Redundant sources, but mangling
signatures also drop requirements from Protocol sources
- mangling signatures also canonicalize the types appearing in the
final requirement
Instead, just go on to the next search path. This prevents a
present-but-unreadable directory from leading to a module load
failure, which happens when one user builds a module and another user
loads it (even if those search paths aren't even being used).
There might still be some other errors that would be useful to treat
as "module found but invalid" rather than "module not found", but
experience has shown that it's the wrong default.
There is a Radar for this but I can't find it.
The presence of a generic signature in a XREF means that we should only find the result in a (further-constrained) extension with that generic signature. The absence of a generic signature in a XREF means that we should not find the result in a constrained extension. We implemented the former but not the latter, which would lead to deserialization failures if one had both constrained and unconstrained extensions with the same property in them. Methods/initializers weren’t a problem because the generic signature is (redundantly) encoded in their interface type.
One minor revision: this lifts the proposed restriction against
overriding a non-open method with an open one. On reflection,
that was inconsistent with the existing rule permitting non-public
methods to be overridden with public ones. The restriction on
subclassing a non-open class with an open class remains, and is
in fact consistent with the existing access rule.
What I've implemented here deviates from the current proposal text
in the following ways:
- I had to introduce a FunctionArrowPrecedence to capture the parsing
of -> in expression contexts.
- I found it convenient to continue to model the assignment property
explicitly.
- The comparison and casting operators have historically been
non-associative; I have chosen to preserve that, since I don't
think this proposal intended to change it.
- This uses the precedence group names and higherThan/lowerThan
as agreed in discussion.
- All parts of the compiler now use ‘P1 & P2’ syntax
- The demangler and AST printer wrap the composition in parens if it is
in a metatype lookup
- IRGen mangles compositions differently
- “protocol<>” is now “swift.Any”
- “protocol<_TP1P,_TP1Q>” is now “_TP1P&_TP1Q”
- Tests cases are updated and added to test the new syntax and mangling