I debated making isBodyThrowing() do this, but decided that
(1) the better recovery mode is to assume that the function
can throw but (2) making isBodyThrowing() return true on an
invalid function would be really weird.
Tested by the crash testsuite.
Swift SVN r27902
For the most part, this just involves spot fixes to make sure protocol inits follow the same paths as value type initializers would, with the extra wrinkle that we have to ensure we forward the correct metatype from the delegating initializer to the delegatee, in case the initializer is invoked with a different dynamic type from the static Self type. This should handle non-@objc delegations; @objc will need some additional work.
Swift SVN r27900
Preparation to fix <rdar://problem/18151694> Add Builtin.checkUnique
to avoid lost Array copies.
This adds the following new builtins:
isUnique : <T> (inout T[?]) -> Int1
isUniqueOrPinned : <T> (inout T[?]) -> Int1
These builtins take an inout object reference and return a
boolean. Passing the reference inout forces the optimizer to preserve
a retain distinct from what’s required to maintain lifetime for any of
the reference's source-level copies, because the called function is
allowed to replace the reference, thereby releasing the referent.
Before this change, the API entry points for uniqueness checking
already took an inout reference. However, after full inlining, it was
possible for two source-level variables that reference the same object
to appear to be the same variable from the optimizer's perspective
because an address to the variable was longer taken at the point of
checking uniqueness. Consequently the optimizer could remove
"redundant" copies which were actually needed to implement
copy-on-write semantics. With a builtin, the variable whose reference
is being checked for uniqueness appears mutable at the level of an
individual SIL instruction.
The kind of reference count checking that Builtin.isUnique performs
depends on the argument type:
- Native object types are directly checked by reading the
strong reference count:
(Builtin.NativeObject, known native class reference)
- Objective-C object types require an additional check that the
dynamic object type uses native swift reference counting:
(Builtin.UnknownObject, unknown class reference, class existential)
- Bridged object types allow the dymanic object type check to be
bypassed based on the pointer encoding:
(Builtin.BridgeObject)
Any of the above types may also be wrapped in an optional. If the
static argument type is optional, then a null check is also performed.
Thus, isUnique only returns true for non-null, native swift object
references with a strong reference count of one.
isUniqueOrPinned has the same semantics as isUnique except that it
also returns true if the object is marked pinned regardless of the
reference count. This allows for simultaneous non-structural
modification of multiple subobjects.
In some cases, the standard library can dynamically determine that it
has a native reference even though the static type is a bridge or
unknown object. Unsafe variants of the builtin are available to allow
the additional pointer bit mask and dynamic class lookup to be
bypassed in these cases:
isUnique_native : <T> (inout T[?]) -> Int1
isUniqueOrPinned_native : <T> (inout T[?]) -> Int1
These builtins perform an implicit cast to NativeObject before
checking uniqueness. There’s no way at SIL level to cast the address
of a reference, so we need to encapsulate this operation as part of
the builtin.
Swift SVN r27887
Printing a module as Objective-C turns out to be a fantastic way to
verify the (de-)serialization of foreign error conventions, so
collapse the parsing-driving Objective-C printing test of throwing
methods into the general test for methods.
Swift SVN r27880
Calls to willThrow are marked as read-none so that the optimizer can remove
them. The willThrow builtin is still generated for all throw/rethrow sites,
but I plan to look at this next.
rdar://20356658
Swift SVN r27877
The diagnostic we were producing was confusing the user into thinking that
you couldn't have a delegating init on a struct. Improve the diagnostic and
add a fixit hint.
Swift SVN r27872
Printing a module as Objective-C turns out to be a fantastic way to
verify the (de-)serialization of foreign error conventions, so
collapse the parsing-driving Objective-C printing test of throwing
methods into the general test for methods.
Swift SVN r27870
Printing Doxygen isn't inside an XML tag, so we can't just print
code block content, which may have new lines without a doc comment
marker. Also, be more robust with indentation.
+ Tests.
rdar://problem/20703026
Swift SVN r27851
a list of their elements, instead of abusing TupleExpr/ParenExpr
to hold them.
This is a more correct representation of what is going on in the
code and produces slightly better diagnostics in obscure cases.
However, the real reason to fix this is that the ParenExpr's that
were being formed were not being installed into the "semantic"
view of the collection expr, not getting type checked correctly,
and led to nonsensical ParenExprs. These non-sensical ParenExprs
blocked turning on AST verification of other ones.
With this fixed, we can finally add AST verification that
IdentityExpr's have sensible types.
Swift SVN r27850
Teach dominator based simplifications to also thread dominated edges.
The code now handles cond_br and switch_enum terminators for both value based
simplifications (where the use is dominated) and jump threading edges (the edge
is dominated).
Update simplify_cfg.sil test cases for split edges.
This also handles the test case from rdar://20390647.
Swift SVN r27843
Extensions cannot be uniquely cross-referenced, so cross-references to
extensions are serialized with the extended nominal type name and the
module in which the extension resides. This is not sufficient when
cross-referencing the generic type parameters of a constrained
protocol extension, because we don't know whether to get the
archetypes of the nominal type or some extension thereof. Serialize
the canonical generic signature so that we can pick an extension with
the same generic signature; it doesn't matter which we pick, so long
as we're consistent.
Fixes rdar://problem/20680169. Triggering this involves some
interesting interactions between the optimizer and standard library;
the standard library updates in the radar will test this.
Swift SVN r27825
We want to be able to synthesize new results inside SourceKit. At this
point, the simplest way to do that is to expose the constructors for
CodeCompletionResult and a create() function for CodeCompletionString.
The expectation that any strings are stored properly inside a
CodeCompletionResultSink is documented.
Swift SVN r27822
emit{StrongRelease,ReleaseValue} => emit{StrongRelease,ReleaseValue}AndFold.
Then introduce a new method emit{StrongRelease,ReleaseValue} that returns a
PointerUnion containing the increment to be deleted if it exists. This obviates
the need for the callback.
Swift SVN r27804
Change how MemberRefExpr and DynamicMemberRefExpr calculate their starting locations so
that even if their base expression is implicit, they will use its starting location if
that location is valid rather than falling back to the start of the name of the member.
Without this change, the Fix-It to suggest wrapping a nested member reference (where the
base is an implicit LoadExpr) in 'if #available(...)' would be inserted in the middle of
the expression.
rdar://problem/20662960
Swift SVN r27799
We now produce:
t.swift:1:15: error: negative integer '-9223372036854775808' overflows when stored into unsigned type 'UInt'
var x: UInt = -0x8000_0000_0000_0000
^
Swift SVN r27797
Store the number of payload and no-payload cases, the case names, and a lazy case type accessor function for enums, like we do for stored properties of structs and classes. This will be useful for multi-payload runtime support, and should also be enough info to hack together a reflection implementation for enums.
For dynamic multi-payload enums to not be ridiculously inefficient, we'll need to track the size of the payload area in the enum, like we do the field offsets of generic structs and classes, so hack off a byte in the payload case count to track the offset of that field in metadata records. 16 million payloads ought to be enough for anyone, right? (and 256 words between the enum metadata's address point and the payload size offset)
Swift SVN r27789
We now produce tailored diagnostics for assignment operators that are passed a non-mutable LHS,
e.g.:
t.swift:14:3: error: cannot pass 'let' value 'x' to mutating binary operator '/='
x /= 19
~ ^
t.swift:13:1: note: change 'let' to 'var' to make it mutable
let x = 42
^~~
var
Swift SVN r27780
- <rdar://problem/16306600> QoI: passing a 'let' value as an inout results in an unfriendly diagnostic
- <rdar://problem/16927246> provide a fixit to change "let" to "var" if needing to mutate a variable
We now refer to an inout argument as such, e.g.:
t.swift:7:9: error: cannot pass 'let' value 'a' as inout argument
swap(&a, &b)
^
we also produce a note with a fixit to rewrite let->var in trivial cases where mutation is
being assed for, e.g.:
t.swift:3:3: note: change 'let' to 'var' to make it mutable
let a = 42
^~~
var
The note is produced by both Sema and DI.
Swift SVN r27774
We now produce diagnostics like:
- cannot pass 'let' value 'a' to mutating unary operator '++'
- cannot pass get-only property 'b' to mutating unary operator '++'
- cannot pass immutable value of type 'Int64' to mutating unary operator '++'
Swift SVN r27772
Now we bind the defer body into a ClosureExpr and emit it at the point of
the defer. At any exit points out of the controlled region, we emit a call
to the closure.
This should cover any problems where expressions cannot be emitted multiple times.
However, this is dramatically more complex than the obvious implementation, so I
hope this patch can be reverted.
Swift SVN r27767
(somewhat ironically, given that we added it for throw) because we model
throw as an Expr currently which makes it more difficult in Sema. SILGen
catches this situation and any others that I didn't remember to handle here.
Swift SVN r27762
missing piece now is Sema support for detecting invalid exits
out of defer bodies. That said, SILGen will also detect it,
and produce an error if sema misses something, e.g.:
t.swift:11:23: error: defer statement is not allowed to be exited
while false { defer { break } }
^
t.swift:12:9: error: defer statement is not allowed to be exited
defer { return }
^
we should still diagnose these in Sema for better QoI of course.
This wraps up: <rdar://problem/17302850> Add a defer keyword to swift
Swift SVN r27760
On that testcase, we now generate:
t.swift:8:22: error: integer literal '123456' overflows when stored into 'UInt8'
case tooFarByFar = 123456
^
t.swift:7:8: error: integer literal '256' overflows when stored into 'UInt8'
case twoHundredFiftySix
^
instead of spitting out some warnings with no source loc (which Xcode eats).
This patch:
- Propagates source locations for literals when synthesizing code in various places,
so we get the right diagnostic at the right spot.
- Improves the constant folding SIL Pass to print the value overflowing, which is
necessary for cases with an implicit value (like 256 above), and is general goodness
for the QoI of the diagnostic anyway.
Swift SVN r27756
This falls out of the rework I did of 'self' in initializers. We now correctly
dealloc_ref the allocated object on the failure path of a convenience init.
Swift SVN r27752
We warn like this:
t.swift:3:12: warning: 'let' pattern has no effect; sub-pattern didn't bind any variables
case let .Bar: println("bar")
^~~ ~~~~
Swift SVN r27747