* diagnostic when a closure parameter is declared with type sugar
* Use a test that was already commmited for SR-11724
i
* Use isa<T> instead of asking for the kind directly
* Fix nit: Remove a whitespace
This commit introduces a request to type-check a
default argument expression and splits
`getDefaultValue` into 2 accessors:
- `getStructuralDefaultExpr` which retrieves the
potentially un-type-checked default argument
expression.
- `getTypeCheckedDefaultExpr` which retrieves a
fully type-checked default argument expression.
In addition, this commit adds `hasDefaultExpr`,
which allows checking for a default expr without
kicking off a request.
When SE-110 was being implemented, we accidentally began to accept
closure parameter declarations that had no associated parameter names,
e.g.
foo { ([Int]) in /**/ }
This syntax has never been sanctioned by any version of Swift and should
be banned. However, the change was made long enough ago and there are
enough clients relying on this, that we cannot accept the source break
at the moment. For now, add a bit to ParamDecl that marks a parameter
as destructured, and back out setting the invalid bit on the type repr
for these kinds of declarations.
To prevent further spread of this syntax, stub in a warning that offers
to insert an anonymous parameter.
Resolves part of rdar://56673657 and improves QoI for errors like
rdar://56911630
Use the isInvalid() bit on the TypeRepr to signal that a closure
parameter is potentially a tuple destructure. This has two benefits
1) Parse is no longer using the isInvalid() bit on Decl
2) Invalidating the type repr itself means that we no longer spuriously
diagnose variable patterns in destructures as missing types.
* [Diagnostics] Add a fix-it for try instead of throws in function decls and types.
Sometimes one would misstype `throws` for `try` so we provide a fix-it for that.
It might happen in two cases:
In function declarations:
```swift
func foo() try {}
```
In function types:
```swift
let f = () try -> Int
```
Resolves SR-11574.
TypeCheckPattern used to splat the interface type into this, and
different parts of the compiler would check one or the other. There is
now one source of truth: The interface type. The type repr is now just
a signal that the user has written an explicit type annotation on
a parameter. For variables, we will eventually be able to just grab
this information from the parent pattern.
Since getSpecifier() now kicks off a request instead of always
returning what was previously set, we can't pass a ParamSpecifier
to the ParamDecl constructor anymore. Instead, callers either
call setSpecifier() if the ParamDecl is synthesized, or they
rely on the request, which can compute the specifier in three
specific cases:
- Ordinary parsed parameters get their specifier from the TypeRepr.
- The 'self' parameter's specifier is based on the self access kind.
- Accessor parameters are either the 'newValue' parameter of a
setter, or a cloned subscript parameter.
For closure parameters with inferred types, we still end up
calling setSpecifier() twice, once to set the initial defalut
value and a second time when applying the solution in the
case that we inferred an 'inout' specifier. In practice this
should not be a big problem because expression type checking
walks the AST in a pre-determined order anyway.
Like the last commit, SourceFile is used a lot by Parse and Sema, but
less so by the ClangImporter and (de)Serialization. Split it out to
cut down on recompilation times when something changes.
This commit does /not/ split the implementation of SourceFile out of
Module.cpp, which is where most of it lives. That might also be a
reasonable change, but the reason I was reluctant to is because a
number of SourceFile members correspond to the entry points in
ModuleDecl. Someone else can pick this up later if they decide it's a
good idea.
No functionality change.
Most of AST, Parse, and Sema deal with FileUnits regularly, but SIL
and IRGen certainly don't. Split FileUnit out into its own header to
cut down on recompilation times when something changes.
No functionality change.
So that we can easily detect 'ParsedSyntaxNode' leaking. When it's
moved, the original node become "null" node. In the destructor of
'ParsedSyntaxNode', assert the node is not "recorded" node.
The diagnostic is now a warning and the new message alerts the user that
though it is valid to have let and var as argument label names,
they are interpreted as argument labels, not keywords.
Also:
- additionally require the containing and overridden initializers are
designated, as that's the only case in which we should produce the '= super'
syntax in module interfaces
- Add notes to point out the locations of the overriden initializer when it's
not designated, and the corresponding parameter in that initializer when it
doesn't have a default argument to inherit.
The bulk of the changes are to SILGenApply. As we must now evaluate the
payload ArgumentSource to an RValue, we follow the example of subscripts
and lie to the argument emitter. This evaluates arguments at +1 which
can lead to slightly worse codegen at -Onone.
While forming/validating parameters make sure that the type is indeed
a function type before marking it as `autoclosure` based on type
representative attributes, because parser doesn't change attributes
even after the error has been found and diagnosed.
Resolves: rdar://problem/47586626
Instead of creating syntax nodes directly, modify the parser to invoke an abstract interface 'SyntaxParseActions' while it is parsing the source code.
This decouples the act of parsing from the act of forming a syntax tree representation.
'SyntaxTreeCreator' is an implementation of SyntaxParseActions that handles the logic of creating a syntax tree.
To enforce the layering separation of parsing and syntax tree creation, a static library swiftSyntaxParse is introduced to compose the two.
This decoupling is important for introducing a syntax parser library for SwiftSyntax to directly access parsing.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done