Through various means, it is possible for a synchronous actor-isolated
function to escape to another concurrency domain and be called from
outside the actor. The problem existed previously, but has become far
easier to trigger now that `@escaping` closures and local functions
can be actor-isolated.
Introduce runtime detection of such data races, where a synchronous
actor-isolated function ends up being called from the wrong executor.
Do this by emitting an executor check in actor-isolated synchronous
functions, where we query the executor in thread-local storage and
ensure that it is what we expect. If it isn't, the runtime complains.
The runtime's complaints can be controlled with the environment
variable `SWIFT_UNEXPECTED_EXECUTOR_LOG_LEVEL`:
0 - disable checking
1 - warn when a data race is detected
2 - error and abort when a data race is detected
At an implementation level, this introduces a new concurrency runtime
entry point `_checkExpectedExecutor` that checks the given executor
(on which the function should always have been called) against the
executor on which is called (which is in thread-local storage). There
is a special carve-out here for `@MainActor` code, where we check
against the OS's notion of "main thread" as well, so that `@MainActor`
code can be called via (e.g.) the Dispatch library's
`DispatchQueue.main.async`.
The new SIL instruction `extract_executor` performs the lowering of an
actor down to its executor, which is implicit in the `hop_to_executor`
instruction. Extend the LowerHopToExecutor pass to perform said
lowering.
Repurpose mangling operator `Y` as an umbrella operator that covers new attributes on function types. Free up operators `J`, `j`, and `k`.
```
async ::= 'Ya' // 'async' annotation on function types
sendable ::= 'Yb' // @Sendable on function types
throws ::= 'K' // 'throws' annotation on function types
differentiable ::= 'Yjf' // @differentiable(_forward) on function type
differentiable ::= 'Yjr' // @differentiable(reverse) on function type
differentiable ::= 'Yjd' // @differentiable on function type
differentiable ::= 'Yjl' // @differentiable(_linear) on function type
```
Resolves rdar://76299796.
`@noDerivative` was not mangled in function types, and was resolved incorrectly when there's an ownership specifier. It is fixed by this patch with the following changes:
* Add `NoDerivative` demangle node represented by a `k` operator.
```
list-type ::= type identifier? 'k'? 'z'? 'h'? 'n'? 'd'? // type with optional label, '@noDerivative', inout convention, shared convention, owned convention, and variadic specifier
```
* Fix `NoDerivative`'s overflown offset in `ParameterTypeFlags` (`7` -> `6`).
* In type decoder and type resolver where attributed type nodes are processed, add support for nested attributed nodes, e.g. `inout @noDerivative T`.
* Add `TypeResolverContext::InoutFunctionInput` so that when we resolve an `inout @noDerivative T` parameter, the `@noDerivative T` checking logic won't get a `TypeResolverContext::None` set by the caller.
Resolves rdar://75916833.
The comment in LowerHopToActor explains the design here.
We want SILGen to emit hops to actors, ignoring executors,
because it's easier to fully optimize in a world where deriving
an executor is a non-trivial operation. But we also want something
prior to IRGen to lower the executor derivation because there are
useful static optimizations we can do, such as doing the derivation
exactly once on a dominance path and strength-reducing the derivation
(e.g. exploiting static knowledge that an actor is a default actor).
There are probably phase-ordering problems with doing this so late,
but hopefully they're restricted to situations like actors that
share an executor. We'll want to optimize that eventually, but
in the meantime, this unblocks the executor work.
* Move differentiability kinds from target function type metadata to trailing objects so that we don't exhaust all remaining bits of function type metadata.
* Differentiability kind is now stored in a tail-allocated word when function type flags say it's differentiable, located immediately after the normal function type metadata's contents (with proper alignment in between).
* Add new runtime function `swift_getFunctionTypeMetadataDifferentiable` which handles differentiable function types.
* Fix mangling of different differentiability kinds in function types. Mangle it like `ConcurrentFunctionType` so that we can drop special cases for escaping functions.
```
function-signature ::= params-type params-type async? sendable? throws? differentiable? // results and parameters
...
differentiable ::= 'jf' // @differentiable(_forward) on function type
differentiable ::= 'jr' // @differentiable(reverse) on function type
differentiable ::= 'jd' // @differentiable on function type
differentiable ::= 'jl' // @differentiable(_linear) on function type
```
Resolves rdar://75240064.
If the '[poison]' flag is set, then all references within this debug
value will be overwritten with a sentinel at this point in the
program. This is used in debug builds when shortening non-trivial
value lifetimes to ensure the debugger cannot inspect invalid
memory. `debug_value` instructions with the poison flag are not
generated until OSSA islowered. They are not expected to be serialized
within the module, and the pipeline is not expected to do any
significant code motion after lowering.
* Refactoring: replace "Destination" and the ownership qualifier by a single "Mode". This represents much better the mode how the instruction is to be lowered. NFC
* Make assign_by_wrapper printable and parseable.
* Fix lowering of the assign modes for indirect results of the init-closure: The indirect result was initialized and not assigned to. The fix is to insert a destroy_addr before calling the init closure. This fixes a memory lifetime error and/or a memory leak. Found by inspection.
* Fix an iterator-invalidation crash in RawSILInstLowering
* Add tests for lowering assign_by_wrapper.
Currently docs are a mix of reStructuredText and Markdown and unifying them as Markdown would make more sense long term, as far as I understand. This converts `ARCOptmization.rst`, initially converted with [Pandoc](https://pandoc.org/) with manual cleanup after the fact.