This rewrites the existing redundant requirements algorithm
to be simpler, and fix an incorrect behavior in the case where
we're building a protocol requirement signature.
Consider the following example:
protocol P {
associatedtype A : P
associatedtype B : P where A.B == B
}
The requirement B : P has two conformance paths here:
(B : P)
(A : P)(B : P)
The naive redundancy algorithm would conclude that (B : P) is
redundant because it can be derived as (A : P)(B : P). However,
if we drop (B : P), we lose the derived conformance path
as well, since it involves the same requirement (B : P).
The above example actually worked before this change, because we
handled this case in getMinimalConformanceSource() by dropping any
derived conformance paths that involve the requirement itself
appearing in the "middle" of the path.
However, this is insufficient because you can have a "cycle"
here with length more than 1. For example,
protocol P {
associatedtype A : P where A == B.C
associatedtype B : P where B == A.C
associatedtype C : P where C == A.B
}
The requirement A : P has two conformance paths here:
(A : P)
(B : P)(C : P)
Similarly, B : P has these two paths:
(B : P)
(A : P)(C : P)
And C : P has these two paths:
(C : P)
(A : P)(B : P)
Since each one of A : P, B : P and C : P has a derived conformance
path that does not involve itself, we would conclude that all three
were redundant. But this was wrong; while (B : P)(C : P) is a valid
derived path for A : P that allows us to drop A : P, once we commit to
dropping A : P, we can no longer use the other derived paths
(A : P)(C : P) for B : P, and (A : P)(B : P) for C : P, respectively,
because they involve A : P, which we dropped.
The problem is that we were losing information here. The explicit
requirement A : P can be derived as (B : P)(C : P), but we would
just say that it was implied by B : P alone.
For non-protocol generic signatures, just looking at the root is
still sufficient.
However, when building a requirement signature of a self-recursive
protocol, instead of looking at the root explicit requirement only,
we need to look at _all_ intermediate steps in the path that involve
the same protocol.
This is implemented in a new getBaseRequirements() method, which
generalizes the operation of getting the explicit requirement at
the root of a derived conformance path by returning a vector of
one or more explicit requirements that appear in the path.
Also the new algorithm computes redundancy online instead of building
a directed graph and then computing SCCs. This is possible by
recording newly-discovered redundant requirements immediately,
and then using the set of so-far-redundant requirements when
evaluating a path.
This commit introduces a small regression in an existing test case
involving a protocol with a 'derived via concrete' requirement.
Subsequent commits in this PR fix the regression and remove the
'derived via concrete' mechanism, since it is no longer necessary.
Fixes https://bugs.swift.org/browse/SR-14510 / rdar://problem/76883924.
It seems that MSVC 2017 trips parsing an using of a using of a variadic
template. Removing one level of using seems to work fine. A preprocessor
macro allows to keep using the same syntax in both MSVC 2017 and other
compilers without making a lot of a mess.
I think this might have been uncovered by landing apple/llvm-project#2898
when it was picked up by the auto-merger for the swift/main branch.
I think this was not a problem until now, because Metadata.h was
compiled using the just compiled Clang until now. LLDB is compiled using
MSVC in Windows.
The new approach is to not look at RequirementSources at all. Instead,
we exhaustively enumerate all conformance access paths, beginning
from the root conformance requirements in the signature, then doing
all conformance requirements from those protocols' requirement
signatures, and so on.
We enumerate conformance access paths in breadth first order by
length until we find the one we want. The results are memoized.
This fixes a regression with another change I'm working on. The
test case does not fail with this PR alone, but I'm adding it now
anyway.
If there is a `-fmodule-map-file` argument whose file doesn’t exist and SwiftShims is not in the module cache, we fail to build it, because clang throws an error about the missing module map. This causes SourceKit to drop all semantic functionality, even if the missing module map isn’t required.
To work around this, drop all `-fmodule-map-file` arguments with missing files from the clang importer’s arguments, reporting the eror that `clang` would throw manually.
Fixes rdar://77449671
1. Removes gating on -enable-experimental-concurrency.
2. Updates eff. prop tests to remove experimental flag,
and also adjusts some tests slightly to avoid things
that are still behind that flag.
For config condition `canImport(Foo, version: N)`, this patch teaches the compiler to check N
against the version of the Swift module Foo on disk. It returns true if the module version on
disk is greater or equal to N and returns false otherwise.
Part of rdar://73992299
If `async` effect has been inferred from the body of the closure,
let's find out the first occurrence of `async` node and point it out
to make it clear why closure is `async`.
Resolves: rdar://70610141
canImport should be able to take an additional parameter labeled by either version or
underlyingVersion. We need underlyingVersion for clang modules with Swift overlays because they
have separate version numbers. The library users are usually interested in checking the importability
of the underlying clang module instead of its Swift overlay.
Part of rdar://73992299
If the `-static` option is specified, store that in the generated
swiftmodule file. When de-serializing, recover this information in the
representative SILModule.
This will be used for code generation on Windows. It is the missing
piece to allow static linking to function properly. It additionally
opens the path to additional optimization on ELF-ish targets - GOT, PLT
references can be avoided when the linked module is known to be static.
Co-authored by: Saleem Abdulrasool <compnerd@compnerd.org>