- Introduce an UnownedSerialExecutor type into the concurrency library.
- Create a SerialExecutor protocol which allows an executor type to
change how it executes jobs.
- Add an unownedExecutor requirement to the Actor protocol.
- Change the ABI for ExecutorRef so that it stores a SerialExecutor
witness table pointer in the implementation field. This effectively
makes ExecutorRef an `unowned(unsafe) SerialExecutor`, except that
default actors are represented without a witness table pointer (just
a bit-pattern).
- Synthesize the unownedExecutor method for default actors (i.e. actors
that don't provide an unownedExecutor property).
- Make synthesized unownedExecutor properties `final`, and give them
a semantics attribute specifying that they're for default actors.
- Split `Builtin.buildSerialExecutorRef` into a few more precise
builtins. We're not using the main-actor one yet, though.
Pitch thread:
https://forums.swift.org/t/support-custom-executors-in-swift-concurrency/44425
There are a number of occurances that create implicit `Switch`s by passing `SourceLoc()` for all location paramters. Refactor those occurances out to a separate `createImplicit` method that automatically fills the locations with invalid source locations.
At the moment, if there is an error in the `switch` statement expression or if the `{` is missing, we return `nullptr` from `parseStmtSwitch`, but we consume tokens while trying to parse the `switch` statement. This causes the AST to not contain any nodes for the tokens that were consumed while trying to parse the `switch` statement.
While this doesn’t cause any issues during compilation (compiling fails anyway so not having the `switch` statement in the AST is not a problem) this causes issues when trying to complete inside an expression that was consumed while trying to parse the `switch` statement but doesn’t have a representation in the AST. The solver-based completion approach can’t find the expression that contains the completion token (because it’s not part of the AST) and thus return empty results.
To fix this, make sure we are always creating a `SwitchStmt` when consuming tokens for it.
Previously, one could always assume that a `SwitchStmt` had a valid `LBraceLoc` and `RBraceLoc`. This is no longer the case because of the recovery. In order to form the `SwitchStmt`’s `SourceRange`, I needed to add a `EndLoc` property to `SwitchStmt` that keeps track of the last token in the `SwitchStmt`. Theoretically we should be able to compute this location by traversing the right brace, case stmts, subject expression, … in reverse order until we find something that’s not missing. But if the `SubjectExpr` is an `ErrorExpr`, representing a missing expression, it might have a source range that points to one after the last token in the statement (this is due to the way the `ErrorExpr` is being constructed), therefore returning an invalid range. So overall I thought it was easier and safer to add another property.
Fixes rdar://76688441 [SR-14490]
The backs out of some early decisions we made about actor layout
that we don't need. Custom actors will use a different approach.
This should suffice for the remainder of rdar://70146827.
* [Sema]: Add Codable synthesis for enums with associated values
* Incorporate review feedback for enum Codable synthesis
* Implement enum specific versions of existing Codable tests
* Encode parameterless enum cases as
* Add test for overloaded case identifiers
* Align code generation with latest proposal revision
* Put enum codable derivation behind flag
* clang-format sources
* Address review feedback and fix tests
* Add diagnostic for conflicting parameter identifiers
* Restructure code after rebase
Rename `move(along:)` to `move(by:)` based on the proposal feedback. The main argument for the change is that tangent vectors specify both a direction and a magnitude, whereas `along:` does not indicate that `self` is being moved by the specified magnitude.
Actor classes never have non-actor superclasses, so we can ensure that
all actor classes have a common vtable prefix for the
`enqueue(partialTask:)` operation. This allows us to treat all actor
classes uniformly, without having to go through the Actor witness
table every time.
Introduce a new Actor protocol, which is a class-bound protocol with only
one requirement:
func enqueue(partialTask: PartialAsyncTask)
All actor classes implicitly conform to this protocol, and will synthesize
a (currently empty) definition of `enqueue(partialTask:)` unless a suitable
one is provided explicitly.
We'll need this to get the right 'selfDC' when name lookup
finds a 'self' declaration in a capture list, eg
class C {
func bar() {}
func foo() {
_ = { [self] in bar() }
}
}
Mention the type, the requirement, and the extension in the error that
follows. In editor mode, try to insert stubs for the missing requirement
as well so the user isn't just left with a pile of unactionable errors.
VarPattern is today used to implement both 'let' and 'var' pattern bindings, so
today is already misleading. The reason why the name Var was chosen was done b/c
it is meant to represent a pattern that performs 'variable binding'. Given that
I am going to add a new 'inout' pattern binding to this, it makes sense to
give it now a better fitting name before I make things more confusing.
`Differentiable` conformance derivation now supports
`Differentiable.zeroTangentVectorInitializer`.
There are two potential cases:
1. Memberwise derivation: done when `TangentVector` can be initialized memberwise.
2. `{ TangentVector.zero }` derivation: done as a fallback.
`zeroTangentVectorInitializer` is a closure that produces a zero tangent vector,
capturing minimal necessary information from `self`.
It is an instance property, unlike the static property `AdditiveArithmetic.zero`,
and should be used by the differentiation transform for correctness.
Remove `Differentiable.zeroTangentVectorInitializer` dummy default implementation.
Update stdlib `Differentiable` conformances and tests.
Clean up DerivedConformanceDifferentiable.cpp cruft.
Resolves TF-1007.
Progress towards TF-1008: differentiation correctness for projection operations.
All callers can trivially be refactored to use ModuleDecl::lookupConformance()
instead. Since this was the last flag in ConformanceCheckOptions, we can remove
that, too.
Like switch cases, a catch clause may now include a comma-
separated list of patterns. The body will be executed if any
one of those patterns is matched.
This patch replaces `CatchStmt` with `CaseStmt` as the children
of `DoCatchStmt` in the AST. This necessitates a number of changes
throughout the compiler, including:
- Parser & libsyntax support for the new syntax and AST structure
- Typechecking of multi-pattern catches, including those which
contain bindings.
- SILGen support
- Code completion updates
- Profiler updates
- Name lookup changes
Add `AdditiveArithmetic` derived conformances for structs and classes, gated by
the `-enable-experimental-differentiable-programming` flag.
Structs and classes whose stored properties all conform to `Differentiable` can
derive `Differentiable`:
- `associatedtype TangentVector: Differentiable & AdditiveArithmetic`
- Member `TangentVector` structs are synthesized whose stored properties are
all `var` stored properties that conform to `Differentiable` and that are
not `@noDerivative`.
- `mutating func move(along: TangentVector)`
The `@noDerivative` attribute may be declared on stored properties to opt out of
inclusion in synthesized `TangentVector` structs.
Some stored properties cannot be used in `TangentVector` struct synthesis and
are implicitly marked as `@noDerivative`, with a warning:
- `let` stored properties.
- These cannot be updated by `mutating func move(along: TangentVector)`.
- Non-`Differentiable`-conforming stored properties.
`@noDerivative` also implies `@_semantics("autodiff.nonvarying")`, which is
relevant for differentiable activity analysis.
Add type-checking and SILGen tests.
Resolves TF-845.
Add `AdditiveArithmetic` derived conformances for structs, gated by the
`-enable-experimential-additive-arithmetic-derivation` flag.
Structs whose stored properties all conform to `AdditiveArithmetic` can derive
`AdditiveArithmetic`:
- `static var zero: Self`
- `static func +(lhs: Self, rhs: Self) -> Self`
- `static func -(lhs: Self, rhs: Self) -> Self`
- An "effective memberwise initializer":
- Either a synthesized memberwise initializer or a user-defined initializer
with the same type.
Effective memberwise initializers are used only by derived conformances for
`Self`-returning protocol requirements like `AdditiveArithmetic.+`, which
require memberwise initialization.
Resolves TF-844.
Unblocks TF-845: upstream `Differentiable` derived conformances.
The error recovery logic around derived conformances is a little bit
tricky. Make sure we don't crash if a type explicitly provides a
RawValue type witness that is not equatable, but omits the witnesses
for init(rawValue:) and the rawValue property.
Fixes <rdar://problem/58127114>.
Hashable doesn't quite have the know-how to reject invalid derivation contexts before hand. Give it a little help by adding a way to retrieve if a decl added to the conformance context was invalid after type checking completes. Otherwise we'll emit "Hashable is broken".
This used to be a lot more relevant a long time ago when typeCheckFunctionsAndExternalDecls actually did type check external functions defined in C. Now, it serves no purpose.
The validation order change from just type checking these things eagerly doesn't seem to affect anything.
ProtocolConformanceRef already has an invalid state. Drop all of the
uses of Optional<ProtocolConformanceRef> and just use
ProtocolConformanceRef::forInvalid() to represent it. Mechanically
translate all of the callers and callsites to use this new
representation.