Add `async` to the type system. `async` can be written as part of a
function type or function declaration, following the parameter list, e.g.,
func doSomeWork() async { ... }
`async` functions are distinct from non-`async` functions and there
are no conversions amongst them. At present, `async` functions do not
*do* anything, but this commit fully supports them as a distinct kind
of function throughout:
* Parsing of `async`
* AST representation of `async` in declarations and types
* Syntactic type representation of `async`
* (De-/re-)mangling of function types involving 'async'
* Runtime type representation and reconstruction of function types
involving `async`.
* Dynamic casting restrictions for `async` function types
* (De-)serialization of `async` function types
* Disabling overriding, witness matching, and conversions with
differing `async`
Introduce a new frontend flag -enable-volatile-modules to trigger
loading swiftmodule files as volatile and avoid using mmap. Revert the
default behavior to using mmap.
In order to avoid accidentally implicitly loading modules that are expected but were not provided as explicit inputs.
- Use either SerializedModuleLoader or ExplicitSwiftModuleLoader for loading of partial modules, depending on whether we are in Explicit Module Build or Implicit Module Build mode.
Avoid mmaping swiftmodule files to hopefully fix issues seen when
building many Swift projects in parallel on NFS. This only affects
loading ModuleFile, it doesn't affect scanning swiftmodule for
dependecies which are still handled as non-volatile.
rdar://63755989
Instead of replacing an interface file with its up-to-date compile module,
the dep-scanner should report potentially up-to-date module candidates either adjacent to
the interface file or in the prebuilt module cache. swift-driver should later pass down
these candidates to -compile-module-from-interface invocation and the front-end job
will check if one of the candidates is ready to use. The front-end job then either emits a forwarding
module to an up-to-date candidate or a binary module.
VarPattern is today used to implement both 'let' and 'var' pattern bindings, so
today is already misleading. The reason why the name Var was chosen was done b/c
it is meant to represent a pattern that performs 'variable binding'. Given that
I am going to add a new 'inout' pattern binding to this, it makes sense to
give it now a better fitting name before I make things more confusing.
In -swift-version 5 and earlier, #file will continue to be a synonym for #filePath; in a future -swift-version (“Swift 6 mode”), it will become a synonym for #fileID. #file in libraries will be interpreted according to the language mode the library was compiled in, not the language mode its client uses.
Implement this behavior, tied to a frontend flag instead of a language version. We do so by splitting the old `MagicIdentifierLiteralExprKind::File` into two separate cases, `FileIDSpelledAsFile` and `FilePathSpelledAsFile`, and propagating this distinction throughout the AST. This seems cleaner than looking up the setting for the module the declaration belongs to every time we see `File`.
This doesn’t handle module interfaces yet; we’ll take care of those in a separate commit.
Extracts the list of magic identifier literal kinds into a separate file and updates a lot of code to use macro metaprogramming instead of naming half a dozen cases manually. This is a complicated change, but it should be NFC.
Today unchecked_bitwise_cast returns a value with ObjCUnowned ownership. This is
important to do since the instruction can truncate memory meaning we want to
treat it as a new object that must be copied before use.
This means that in OSSA we do not have a purely ossa forwarding unchecked
layout-compatible assuming cast. This role is filled by unchecked_value_cast.