The immediate desire is to minimize the set of ABI dependencies
on the layout of an ExecutorRef. In addition to that, however,
I wanted to generally reduce the code size impact of an unsafe
continuation since it now requires accessing thread-local state,
and I wanted resumption to not have to create unnecessary type
metadata for the value type just to do the initialization.
Therefore, I've introduced a swift_continuation_init function
which handles the default initialization of a continuation
and returns a reference to the current task. I've also moved
the initialization of the normal continuation result into the
caller (out of the runtime), and I've moved the resumption-side
cmpxchg into the runtime (and prior to the task being enqueued).
Most of the async runtime functions have been changed to not
expect the task and executor to be passed in. When knowing the
task and executor is necessary, there are runtime functions
available to recover them.
The biggest change I had to make to a runtime function signature
was to swift_task_switch, which has been altered to expect to be
passed the context and resumption function instead of requiring
the caller to park the task. This has the pleasant consequence
of allowing the implementation to very quickly turn around when
it recognizes that the current executor is satisfactory. It does
mean that on arm64e we have to sign the continuation function
pointer as an argument and then potentially resign it when
assigning into the task's resume slot.
rdar://70546948
The `coro.end.async` intrinsic allow specifying a function that is to be
tail-called as the last thing before returning.
LLVM lowering will inline the `must-tail-call` function argument to
`coro.end.async`. This `must-tail-call` function can contain a
`musttail` call.
```
define @my_must_tail_call_func(void (*)(i64) %fnptr, i64 %args) {
musttail call void %fnptr(i64 %args)
ret void
}
define @async_func() {
...
coro.end.async(..., @my_must_tail_call_func, %return_continuation, i64 %args)
unreachable
}
```
For this, store those 3 values on the stack at function entry and update them with the return values of coro_suspend_async intrinsic calls.
This fixes a correctness issue, because the executor may be different after a resume.
It also is more efficient, because this means that the 3 values don't have to preserved in the context over a suspension point.