If the '[poison]' flag is set, then all references within this debug
value will be overwritten with a sentinel at this point in the
program. This is used in debug builds when shortening non-trivial
value lifetimes to ensure the debugger cannot inspect invalid
memory. `debug_value` instructions with the poison flag are not
generated until OSSA islowered. They are not expected to be serialized
within the module, and the pipeline is not expected to do any
significant code motion after lowering.
While removing an invalid cast and inserting traps, we are currently
inserting a store of undef to the cast destination and delete all
instructions after the cast except for dealloc_stack.
If the cast destination was an alloc_stack, the verifier could raise
an error saying the cast destination was initialized at the dealloc.
This PR deletes the store to undef, destroy_addr of the cast src,
and gets rid of the code that was retaining the dealloc_stack.
None of this is necessary anymore and the SIL is going to be legal
because we insert unreachable instruction.
Specifically, I made it so that assuming our instruction is inserted into a
block already that we:
1. Return a constraint of {OwnershipKind::Any, UseLifetimeConstraint::NonLifetimeEnding}.
2. Return OwnershipKind::None for all values.
Noticed above I said that if the instruction is already inserted into a block
then we do this. The reason why is that if this is called before an instruction
is inserted into a block, we can't get access to the SILFunction that has the
information on whether or not we are in OSSA form. The only time this can happen
is if one is using these APIs from within SILBuilder since SILBuilder is the
only place where we allow this to happen. In SILBuilder, we already know whether
or not our function is in ossa or not and already does different things as
appropriate (namely in non-ossa does not call getOwnershipKind()). So we know
that if these APIs are called in such a situation, we will only be calling it if
we are in OSSA already. Given that, we just assume we are in OSSA if we do not
have a function.
To make sure that no mistakes are made as a result of that assumption, I put in
a verifier check that all values when ownership is disabled return a
OwnershipKind::None from getOwnershipKind().
The main upside to this is this means that we can write code for both
OSSA/non-OSSA and write code for non-None ownership without needing to check if
ownership is enabled.
The ``base_addr_for_offset`` instruction creates a base address for offset calculations.
The result can be used by address projections, like ``struct_element_addr``, which themselves return the offset of the projected fields.
IR generation simply creates a null pointer for ``base_addr_for_offset``.
Private and internal classes shouldn't have ABI constraints on their concrete vtable layout, so if methods
don't have overrides in practice, we can elide their vtable entries.
* a new [immutable] attribute on ref_element_addr and ref_tail_addr
* new instructions: begin_cow_mutation and end_cow_mutation
These new instructions are intended to be used for the stdlib's COW containers, e.g. Array.
They allow more aggressive optimizations, especially for Array.
SIL type lowering erases DynamicSelfType, so we generate
incorrect code when casting to DynamicSelfType. Fixing this
requires a fair amount of plumbing, but most of the
changes are mechanical.
Note that the textual SIL syntax for casts has changed
slightly; the target type is now a formal type without a '$',
not a SIL type.
Also, the unconditional_checked_cast_value and
checked_cast_value_br instructions now take the _source_
formal type as well, just like the *_addr forms they are
intended to replace.
This removes it from the AST and largely replaces it with AnyObject
at the SIL and IRGen layers. Some notes:
- Reflection still uses the notion of "unknown object" to mean an
object with unknown refcounting. There's no real reason to make
this different from AnyObject (an existential containing a
single object with unknown refcounting), but this way nothing
changes for clients of Reflection, and it's consistent with how
native objects are represented.
- The value witness table and reflection descriptor for AnyObject
use the mangling "BO" instead of "yXl".
- The demangler and remangler continue to support "BO" because it's
still in use as a type encoding, even if it's not an AST-level
Type anymore.
- Type-based alias analysis for Builtin.UnknownObject was incorrect,
so it's a good thing we weren't using it.
- Same with enum layout. (This one assumed UnknownObject never
referred to an Objective-C tagged pointer. That certainly wasn't how
we were using it!)
This flag is set by DefinitInitialization if the lifetime of the stored value is controlled dynamically.
If the flag is set, it's not (easily) possibly to statically calculate the lifetime of the stored value.
Validation of the input side of FunctionTypeRepr was previously being done in Sema because of expression folding. If we instead push the invariant that the input TypeRepr should always be a TupleTypeRepr into the AST a number of nice cleanups fall out:
- The SIL Parser no longer accepts Swift 2-style type declarations
- Parse is more cleanly able to reject invalid FunctionTypeReprs
- Clients of the AST can be assured the input type is always a TupleType so we can flush Swift 2 hacks
This flag supports promoting KeyPath access violations to an error in
Swift 4+, while building the standard library in Swift 3 mode. This is
only necessary as long as the standard library continues to build in
Swift 3 mode. Once the standard library build migrates, it can all be
ripped out.
<rdar://problem/40115738> [Exclusivity] Enforce Keypath access as an error, not a warning in 4.2.
To mark when a user of it is known to escape the value. This happens
with materializeForSet arguments which are captured and used in the
write-back. This means we need to keep the context alive until after
the write-back.
Follow-up patches to fully replace the PostponedCleanup hack in SILGen
by a mandatory SIL transformation pass to guarantee the proper lifetime
will use this flag to be more conservative when extending the lifetime.
The problem:
%pa = partial_apply %f(%some_context)
%cvt = convert_escape_to_noescape [not_guaranteed] [escaped] %pa
%ptr = %materialize_for_set(..., %cvt)
... write_back
... // <-- %pa needs to be alive until after write_back
This statically guarantees that the access has no inner conflict within
its own scope.
IRGen will turn this into a "nontracking" access in which an
exclusivity check is performed for conflicts on an outer scope. However,
unlike normal accesses the runtime does not record the access, and the
access will not be checked for subsequent conflicts.
end_unpaired_access [no_nested_conflict] is not currently
supported. Making a begin_unpaired_access [no_nested_conflict] requires
deleting the corresponding end_unpaired_access. Future runtimes
could support this for verification by storing inline data in the
valud buffer. However, the runtime can never assume that a
[no_nested_conflict] begin_unpaired_access will have a corresponding
end_unpaired_access call without adding a new ExclusivityFlag for
that purpose.
Will be used to verify that withoutActuallyEscaping's block does not
escape the closure.
``%escaping = is_escaping_closure %closure`` tests the reference count. If the
closure is not uniquely referenced it prints out and error message and
returns true. Otherwise, it returns false. The returned result can be
used with a ``cond_fail %escaping`` instruction to abort the program.
rdar://35525730
@noescape function types will eventually be trivial. A
convert_escape_to_noescape instruction does not take ownership of its
operand. It is a projection to the trivial value carried by the closure
-- both context and implementation function viewed as a trivial value.
A safe SIL program must ensure that the object that the project value is based
on is live beyond the last use of the trivial value. This will be
achieve by means of making the lifetimes dependent.
For example:
%e = partial_apply [callee_guaranteed] %f(%z) : $@convention(thin) (Builtin.Int64) -> ()
%n = convert_escape_to_noescape %e : $@callee_guaranteed () -> () to $@noescape @callee_guaranteed () -> ()
%n2 = mark_dependence %n : $@noescape @callee_guaranteed () -> () on %e : $@callee_guaranteed () -> ()
%f2 = function_ref @use : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
apply %f2(%n2) : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
release_value %e : $@callee_guaranteed () -> ()
Note: This is not yet actually used.
Part of:
SR-5441
rdar://36116691
This is going to be used for "always emit into client" functions,
such as default argument generators and stored property
initializers.
- In dead function elimination, these functions behave identically to
public functions, serving as "anchors" for the mark-and-sweep
analysis.
- There is no external variant of this linkage, because external
declarations can use HiddenExternal linkage -- the definition should
always be emitted by another translation unit in the same Swift
module.
- When deserialized, they receive shared linkage, because we want the
linker to coalesce multiple copies of the same deserialized
definition if it was deserialized from multiple translation units
in the same Swift module.
- When IRGen emits a definition with this linkage, it receives the
same LLVM-level linkage as a hidden definition, ensuring it does not
have a public entry point.
introduce a common superclass, SILNode.
This is in preparation for allowing instructions to have multiple
results. It is also a somewhat more elegant representation for
instructions that have zero results. Instructions that are known
to have exactly one result inherit from a class, SingleValueInstruction,
that subclasses both ValueBase and SILInstruction. Some care must be
taken when working with SILNode pointers and testing for equality;
please see the comment on SILNode for more information.
A number of SIL passes needed to be updated in order to handle this
new distinction between SIL values and SIL instructions.
Note that the SIL parser is now stricter about not trying to assign
a result value from an instruction (like 'return' or 'strong_retain')
that does not produce any.
This commit contains:
-) adding the new instructions + infrastructure, like parsing, printing, etc.
-) support in IRGen to generate global object-variables (i.e. "heap" objects) which are statically initialized in the data section.
-) IRGen for global_value which lazily initializes the object header and returns a reference to the object.
For details see the documentation of the new instructions in SIL.rst.
This is the lifetime ending variant of fix_lifetime. It is a lie to the
ownership verifier that a value is being consumed along a path. Its intention is
to be used to allow for the static verification of ownership in deallocating
deinits which for compatibility with objective-c have weird ownership behavior.
See the commit merged with this commit for more information.
Once we move to a copy-on-write implementation of existential value buffers we
can no longer consume or destroy values of an opened existential unless the
buffer is uniquely owned.
Therefore we need to track the allowed operation on opened values.
Add qualifiers "mutable_access" and "immutable_access" to open_existential_addr
instructions to indicate the allowed access to the opened value.
Once we move to a copy-on-write implementation, an "open_existential_addr
mutable_access" instruction will ensure unique ownership of the value buffer.
Textual SIL was sometimes ambiguous when SILDeclRefs were used, because the textual representation of SILDeclRefs was the same for functions that have the same name, but different signatures.
Textual SIL was sometimes ambiguous when SILDeclRefs were used, because the textual representation of SILDeclRefs was the same for functions that have the same name, but different signatures.