* [SILGenFunction] Don't create redundant nested debug scopes
Instead of emitting:
```
sil_scope 4 { loc "main.swift":6:19 parent 3 }
sil_scope 5 { loc "main.swift":7:3 parent 4 }
sil_scope 6 { loc "main.swift":7:3 parent 5 }
sil_scope 7 { loc "main.swift":7:3 parent 5 }
sil_scope 8 { loc "main.swift":9:5 parent 4 }
```
Emit:
```
sil_scope 4 { loc "main.swift":6:19 parent 3 }
sil_scope 5 { loc "main.swift":7:3 parent 4 }
sil_scope 6 { loc "main.swift":9:5 parent 5 }
```
* [IRGenSIL] Diagnose conflicting shadow copies
If we attempt to store a value with the wrong type into a slot reserved
for a shadow copy, diagnose what went wrong.
* [SILGenPattern] Defer debug description of case variables
Create unique nested debug scopes for a switch, each of its case labels,
and each of its case bodies. This looks like:
```
switch ... { // Enter scope 1.
case ... : // Enter scope 2, nested within scope 1.
<body-1> // Enter scope 3, nested within scope 2.
case ... : // Enter scope 4, nested within scope 1.
<body-2> // Enter scope 5, nested within scope 4.
}
```
Use the new scope structure to defer emitting debug descriptions of case
bindings. Specifically, defer the work until we can nest the scope for a
case body under the scope for a pattern match.
This fixes SR-7973, a problem where it was impossible to inspect a case
binding in lldb when stopped at a case with multiple items.
Previously, we would emit the debug descriptions too early (in the
pattern match), leading to duplicate/conflicting descriptions. The only
reason that the ambiguous description was allowed to compile was because
the debug scopes were nested incorrectly.
rdar://41048339
* Update tests
SIL type lowering erases DynamicSelfType, so we generate
incorrect code when casting to DynamicSelfType. Fixing this
requires a fair amount of plumbing, but most of the
changes are mechanical.
Note that the textual SIL syntax for casts has changed
slightly; the target type is now a formal type without a '$',
not a SIL type.
Also, the unconditional_checked_cast_value and
checked_cast_value_br instructions now take the _source_
formal type as well, just like the *_addr forms they are
intended to replace.
In SILGenPattern, we need to be able to unforward cleanups when we explode
tuples. Thus we can't use RValue in SILGenPattern since it may implicitly
explode tuples (which without modifying RValue itself we can not
unforward). This patch removes a specific RValue usage that we can replace with
the use of a ManagedValue instead.
rdar://49903264
There was a bug here where we were emitting a shared case if we had arguments.
That is why we needed the hacked in deletion of that block when we emitted
shared blocks. I was able to replace that with an assert to make sure that we do
not regress.
This additionally improved our code generation by eliminating a potential extra
copy when we had such a case. That is where the test updates come from.
In a previous commit, I banned in the verifier any SILValue from producing
ValueOwnershipKind::Any in preparation for this.
This change arises out of discussions in between John, Andy, and I around
ValueOwnershipKind::Trivial. The specific realization was that this ownership
kind was an unnecessary conflation of the a type system idea (triviality) with
an ownership idea (@any, an ownership kind that is compatible with any other
ownership kind at value merge points and can only create). This caused the
ownership model to have to contort to handle the non-payloaded or trivial cases
of non-trivial enums. This is unnecessary if we just eliminate the any case and
in the verifier separately verify that trivial => @any (notice that we do not
verify that @any => trivial).
NOTE: This is technically an NFC intended change since I am just replacing
Trivial with Any. That is why if you look at the tests you will see that I
actually did not need to update anything except removing some @trivial ownership
since @any ownership is represented without writing @any in the parsed sil.
rdar://46294760
This is the last part of SILGen conditionalized on EnableSILOwnership being
set. It also (as you can tell from the diff) eliminates a bunch of code from the
tests.
rdar://29791263
This is the enum element analogue of the tuple fixup in:
359eda52e5. Additionally as a nice fixup I can now
enable ownership verification on most of the switch code.
I ran into commit ordering issues with cleaning up the address only part of the
emitEnumElement so I included it in this commit. Specifically this was because I
realized that it was possible to get a copy_on_success with an object from this
code and I wanted to enforce the invariant that ConsumptionManagedValues only
have copy_on_success with addresses and borrow_always with objects. It was less
convoluted to just fix the address only code to fit that formulation rather than
shoe-horn the old code into the new form.
rdar://29791263
integer protocols changed the way basic arithmetic operations were
called. <rdar://29939484> has more information.
This commit re-enables those tests and updates the SIL that was checked
in the tests to be consistent with the one generated by the current
compiler.
<rdar://29939484>
To do this the commit does a few things:
1. If we enter the tuple dispatch code with an address that is loadable, we
always immediately perform a load_borrow and change the consumable managed value
to BorrowAlways.
2. If we have a take_on_success object, we immediately borrow. We do not want to
do with TakeOnSuccess since we want to define away the need to unforward since
unforwarding recreates a destroy on the already invalidated parent tuple object.
Notice that this code still handles TakeAlways so in simple cases where we have
a +1 value, everything still works.
Since emitTupleDispatchWithOwnership now handles only objects, I renamed it to
emitTupleObjectDispatch.
rdar://29791263
This does not eliminate the entrypoints on SILBuilder yet. I want to do this in
two parts so that it is functionally easier to disentangle changing the APIs
above SILBuilder and changing the underlying instruction itself.
rdar://33440767
This is how we originally controlled whether or not we printed out ownership
annotations when we printed SIL. Since then, I have changed (a few months ago I
believe) the ownership model eliminator to know how to eliminate these
annotations from the SIL itself. So this hack can be removed.
As an additional benefit, this will let me rename -enable-sil-ownership to
-enable-sil-ownership-verifier. This will I hope eliminate confusion around this
option in the short term while I am preparing to work on semantic sil again.
rdar://42509812
The SILGen testsuite consists of valid Swift code covering most language
features. We use these tests to verify that no unknown nodes are in the
file's libSyntax tree. That way we will (hopefully) catch any future
changes or additions to the language which are not implemented in
libSyntax.
I am going to leave in the infrastructure around this just in case. But there is
no reason to keep this in the tests themselves. I can always just revert this
and I don't think merge conflicts are likely due to previous work I did around
the tooling for this.
Otherwise, the plus_zero_* tests will have plus_zero_* as a module name, causing
massive FileCheck problems.
The reason why I am doing it with the main tests is so that I can use it when
syncing branches/etc.
radar://34222540
The `cmv.getValue() == value` check here seems fishy, since the downstream case block should always take ownership of the bound values. Now that `copy_value`s produce new defs, it's also never true when it would've been true using the `retain/release_value` model, leading us to fail to copy values when necessary.
Officially kick SILBoxType over to be "nominal" in its layout, with generic layouts structurally parameterized only by formal types. Change SIL to lower a capture to a nongeneric box when possible, or a box capturing the enclosing generic context when necessary.
Use a syntax that declares the layout's generic parameters and fields,
followed by the generic arguments to apply to the layout:
{ var Int, let String } // A concrete box layout with a mutable Int
// and immutable String field
<T, U> { var T, let U } <Int, String> // A generic box layout,
// applied to Int and String
// arguments
This reverts commit 9508fdc8a7 from #5094. Reemitting
case bodies doesn't work if the body contains nested closures or
declarations, since SILGen expects these to only ever be visited once.
Keep in mind that these are approximations that will not impact correctness
since in all cases I ensured that the SIL will be the same after the
OwnershipModelEliminator has run. The cases that I was unsure of I commented
with SEMANTIC ARC TODO. Once we have the verifier any confusion that may have
occurred here will be dealt with.
rdar://28685236
This ensures that ownership is properly propagated forward through the use-def
graph.
This was the work that was stymied by issues relating to SILBuilder performing
local ARC dataflow. I ripped out that local dataflow in 6f4e2ab and added a
cheap ARC guaranteed dataflow pass that performs the same optimization.
Also in the process of doing this work, I found that there were many SILGen
tests that were either pattern matching in the wrong functions or had wrong
CHECK lines (for instance CHECK_NEXT). I fixed all of these issues and also
expanded many of the tests so that they verify ownership. The only work I left
for a future PR is that there are certain places in tests where we are using the
projection from an original value, instead of a copy. I marked those with a
message SEMANTIC ARC TODO so that they are easy to find.
rdar://28685236
Backed off of the implementation with a shared body block, which got
messy really fast with multiple patterns containing address-only values
to pass in, as it led to separated stack alloc/cleanup requirements and
passing stack alloc’d values as block args, aliasing of addresses for
stack cleanup verifying, etc. A mess.
This now does the conservative thing of repeating the body in each
matching pattern block.
Previously we would produce:
t.swift:3:3: error: binary operator '+=' cannot be applied to operands of type 'Int' and '_'
a += a + b
~ ^ ~~~~~
with a candidate set to follow. Now we properly match up the inout/lvalue type and produce
the following more specific diagnostic:
t.swift:3:10: error: cannot convert value of type 'UInt32' to expected argument type 'Int'
a += a + b
^
pointing the the "b".
Parser now accepts multiple patterns in switch cases that contain variables.
Every pattern must contain the same variable names, but can be in arbitrary
positions. New error for variable that doesn't exist in all patterns.
Sema now checks cases with multiple patterns that each occurence of a variable
name is bound to the same type. New error for unexpected types.
SILGen now shares basic blocks for switch cases that contain multiple
patterns. That BB takes incoming arguments from each applicable pattern match
emission with the specific var decls for the pattern that matched.
Added tests for all three of these, and some simple IDE completion
sanity tests.