When adding an async alternative, add the @completionHandlerAsync
attribute to the sync function. Check for this attribute in addition to
the name check, ie. convert a call if the callee has either
@completionHandlerAsync or a name that is completion-handler-like name.
The addition of the attribute is currently gated behind the experimental
concurrency flag.
Resolves rdar://77486504
This would be needed to reduce overall build times in scenarios when
generating symbols for all binaries is too expensive and/or not needed.
At the same time, introduce tests around the logic that handles symbols.
Addresses rdar://76865276
This would be needed to reduce overall build times in scenarios when
generating symbols for all binaries is too expensive and/or not needed.
Addresses rdar://76865276
...before adding the logic to filter paths
In particular:
* print the list of files that `cpio` copies, so we can test explicitly
which files end up in the symroot (and also see those when asking for
a toolchain in PR testing)
* use `find` instead of `grep` to filter files we want symbols generated
for -- this is to avoid the script failing when there are no symbol to
process, especially in lit tests
* remove an unnecessary check for `swift-api-digester` -- this is now a
symlink to `swift-frontend` and we only process regular files.
Supports rdar://76865276
Rename duplicated `swift::fatalError` in `swiftRuntime` and `swift_Concurrency`.
Both `swiftRuntime` and `swift_Concurrency` had `swift::fatalError` implementation, but it causes symbol conflict with the `-static-stdlib` flag.
This patch removes one of the implementations in `swift_Concurrency` to avoid conflicts. Also added a test case to ensure that linking the Concurrency module with `-static-stdlib` works.
This issue was found by SwiftWasm test cases.
Instead of leaving two copies of the same implementation, rewrite the old method with the completion handler to call the newly added `async` method.
Resolves rdar://74464833
This will make sure that compiler developers are using the new driver when they build the compiler locally and use it.
- Adds a new build-script product category: before_build_script_impl for products we wish to build before the impl products.
- Adds a new EarlySwiftDriver product to that category, which gets built with the host toolchain.
- Adds an escape hatch: --skip-early-swift-driver
- Adjusts the swift CMake configuration with an additional step: swift_create_early_driver_symlinks which (if one was built) creates symlinks in the swift build bin directory to the EarlySwiftDriver swift-driver and swift-help executables.
- Adds a new test subset : only_early_swiftdriver, which will get built into a corresponding CMake test target: check-swift-only_early_swiftdriver-* which runs a small subset of driver-related tests against the Early SwiftDriver.
- This subset is run always when the compiler itself is tested (--test is specified)
- With an escape disable-switch: --skip-test-early-swift-driver
- All tests outside of only_early_swiftdriver are forced to run using the legacy C++ driver (to ensure it gets tested, still).
NOTE: SwiftDriver product (no 'Early') is still the main product used to build the driver for toolchain installation into and for executing the product's own tests. This change does not affect that.
Commit the platform definition and build script work necessary to
cross-compile for arm64_32.
arm64_32 is a variant of AARCH64 that supports an ILP32 architecture.
This library is contained in `lib/swift/<OS>/`, which `recursive-lipo` assumes contains the stdlib, and other Swift code built fat from the get-go. `libSwiftScan` is a part of the compiler build, and is therefore built for the host in a given build, which means toolchain installation requries that we use `lipo` to produce a fat shared library for it.
Resolves rdar://74490218
This is meant to support scenarios in which we need to build as little as
LLVM as possible for performance reasons (e.g. when enabling LTO).
While LLVM CMake build system offers options in this sense,
in our investigation they turned out not to be suitable,
since either they are not granular enough (`LLVM_INCLUDE/BUILD` flags)
or they require active opt out for any new tool added
(`*_BUILD_*_TOOL` flags)
When using this mechanism, there is the possibility to specify different
targets to use for cross-compile hosts.
Supports rdar://32019390
Fixe a couple of bugs in libSyntax parsing found by enabling `-verify-syntax-tree` for `%target-build-swift`:
- Fix parsing of the `actor` contextual keyword in actor decls
- Don't build a libSyntax tree when parsing the availability macro
- The availability macro is not part of the source code and doesn't form a valid Swift file, thus creation of a libSyntax tree is completely pointless and will fail
- Add support for parsing `@_originallyDefinedIn` attributes.
- Add support for parsing `#sourceLocation` in member decl lists
- Add support for effectful properties (throwing/async getters/setters)
- Add support for optional types as the base of a key path (e.g. `\TestOptional2?.something`)
- Allow platform restrictions without a version (e.g. `_iOS13Aligned`)