There are situations where you want to build against a libc that is out
of tree or that is not the system libc (Or for cross build scenarios).
This is a change for passing the -sdk and include paths for things like
this.
In the Android paths of the spawnChild function, the parent was creating
a pipe that was never closed, which led to FD starvation. In some tests
with a lots of expected crashes, the childs will not spawn anymore since
the linker would not have enough descriptors to open the shared
libraries, while in other tests which closed the child descriptors as
part of the last test, the parent process will hang waiting those
descriptors to be closed, which will never had happened.
The solution is implement the missing parts of the code, which tried to
read from the pipe in the parent side (using select and read, taking
pieces from other parts of the code). This should match the fork/execv
path used by Android and Haiku to the spawn code used by the rest of the
platforms.
This change fixes StdlibUnittest/Stdin.swift,
stdlib/InputStream.swift.gyb,
stdlib/Collection/FlattenCollection.swift.gyb and
stdlib/Collection/LazyFilterCollection.swift.gyb, which were the last 4
tests failing in Android AArch64.
This allows the conversion of the Windows `BOOL` type to be converted to
`Bool` implicitly. The implicit bridging allows for a more ergonomic
use of the native Windows APIs in Swift.
Due to the ambiguity between the Objective C `BOOL` and the Windows
`BOOL`, we must manually map the `BOOL` type to the appropriate type.
This required lifting the mapping entry for `ObjCBool` from the mapped
types XMACRO definition into the inline definition in the importer.
Take the opportunity to simplify the mapping code.
Adjust the standard library usage of the `BOOL` type which is now
eclipsed by the new `WindowsBool` type, preferring to use `Bool`
whenever possible.
Thanks to Jordan Rose for the suggestion to do this and a couple of
hints along the way.
Magic symbols of the form $ld$install_name$os9.0$@rpath/libswiftCore.dylib tell the linker to use that install name when targeting that OS version. Use these symbols to specify an @rpath install name for all back-deployment libraries when targeting watchOS 2.0-5.1, iOS 7.0-12.1, and macOS 10.9-10.14.
rdar://problem/45027809
The key thing here is that all of the underlying code is exactly the same. I
purposely did not debride anything. This is to ensure that I am not touching too
much and increasing the probability of weird errors from occurring. Thus the
exact same code should be executed... just the routing changed.
Cygwin is considered a distinct target with a distinct ABI, environment
conditions, and data types. Though the goal of the project is
native Windows integration with UNIX-likes, that is not compatible with
the idea that the platform can be ignored as Win-like enough to have the
existing os(Windows) condition apply.
These changes caused a number of issues:
1. No debug info is emitted when a release-debug info compiler is built.
2. OS X deployment target specification is broken.
3. Swift options were broken without any attempt any recreating that
functionality. The specific option in question is --force-optimized-typechecker.
Such refactorings should be done in a fashion that does not break existing
users and use cases.
This reverts commit e6ce2ff388.
This reverts commit e8645f3750.
This reverts commit 89b038ea7e.
This reverts commit 497cac64d9.
This reverts commit 953ad094da.
This reverts commit e096d1c033.
rdar://30549345
This patch splits add_swift_library into two functions one which handles
the simple case of adding a library that is part of the compiler being
built and the second handling the more complicated case of "target"
libraries, which may need to build for one or more targets.
The new add_swift_library is built using llvm_add_library, which re-uses
LLVM's CMake modules. In adapting to use LLVM's modules some of
add_swift_library's named parameters have been removed and
LINK_LIBRARIES has changed to LINK_LIBS, and LLVM_LINK_COMPONENTS
changed to LINK_COMPONENTS.
This patch also cleans up libswiftBasic's handling of UUID library and
headers, and how it interfaces with gyb sources.
add_swift_library also no longer has the FILE_DEPENDS parameter, which
doesn't matter because llvm_add_library's DEPENDS parameter has the same
behavior.
- CYGWIN symbol is used to distinguish Cygwin environment from other OS
and other environment in Windows.
- Added windows and windowsCygnus to OSVersion in StdlibUnittest
[test] Add a timeout to runRaceTest(). Use it to limit test AtomicInt.swift.
This cuts AtomicInt.swift's execution time from several hours to
about ten minutes on slow hardware and slow build configurations.
As of now:
* old APIs are just marked as `deprecated` not `unavaiable`. To make it
easier to co-operate with other toolchain repos.
* Value variant of API is implemented as public @private
`_ofInstance(_:)`.
Update for SE-0107: UnsafeRawPointer
This adds a "mutating" initialize to UnsafePointer to make
Immutable -> Mutable conversions explicit.
These are quick fixes to stdlib, overlays, and test cases that are necessary
in order to remove arbitrary UnsafePointer conversions.
Many cases can be expressed better up by reworking the surrounding
code, but we first need a working starting point.
As proposed by SE-0107: UnsafeRawPointer:
https://github.com/apple/swift-evolution/blob/master/proposals/0107-unsaferawpointer.md#cstring-conversion
Adds String.init(cString: UnsafePointer<UInt8>)
Adds String.nulTerminatedUTF8CString: ContiguousArray<CChar>
This is necessary for eliminating UnsafePointer conversion. Such
conversion is extremely common for interoperability between Swift
strings and C strings to bridge the difference between CChar and
UTF8.CodeUnit. The standard library does not provide any convenient
utilities for converting between the differently typed
buffers. These APIs will handle the simplest cases involving C
interoperability. More convenience can be added later.
This adds the swiftMSVCRT module which is similar in spirit to swiftGlibc and
swiftDarwin, exposing the Microsoft C Runtime library to swift. Furthermore,
disable pieces of the standard library which are not immediately trivially
portable to Windows. A lot of this functionality can still be implemented and
exposed to the user, however, this is the quickest means to a PoC for native
windows support.
As a temporary solution, add a -DCYGWIN flag to indicate that we are building
for the cygwin windows target. This allows us to continue supporting the cygwin
environment whilst making the windows port work natively against the windows
environment (msvc). Eventually, that will hopefully be replaced with an
environment check in swift.
Support building SwiftPrivateLibcExtras for a number of targets simultaneously.
This will enable cross-compiling the standard library for multiple foreign
targets.
As a first step to allowing the build script to build *only*
static library versions of the stdlib, change `add_swift_library`
such that callers must pass in `SHARED`, `STATIC`, or `OBJECT_LIBRARY`.
Ideally, only these flags would be used to determine whether to
build shared, static, or object libraries, but that is not currently
the case -- `add_swift_library` also checks whether the library
`IS_STDLIB` before performing certain additional actions. This will be
cleaned up in a future commit.
Due to a modeling error in the type checker's folding of type
references into type expressions, code such as "strideof(Int)" would
be accepted without the required ".self". Commit
4a60b6cbf4 fixes the modeling issue but
left the historical accepts-invalid; now, diagnose these cases with a
warning + Fix-It to ease the transition.
Fixes SR-899.
The general rule here is that something needs to be SWIFT_CC(swift)
if it's just declared in Swift code using _silgen_name, as opposed to
importing something via a header.
Of course, SWIFT_CC(swift) expands to nothing by default for now, and
I haven't made an effort yet to add the indirect-result / context
parameter ABI attributes. This is just a best-effort first pass.
I also took the opportunity to shift a few files to just implement
their shims header and to demote a few things to be private stdlib
interfaces.
This is a squash of the following commits:
* [SE-0054] Import function pointer arg, return types, typedefs as optional
IUOs are only allowed on function decl arguments and return types, so
don't import typedefs or function pointer args or return types as IUO.
* [SE-0054] Only allow IUOs in function arg and result type.
When validating a TypeRepr, raise a diagnostic if an IUO is found
anywhere other thn the top level or as a function parameter or return
tpye.
* [SE-0054] Disable inference of IUOs by default
When considering a constraint of the form '$T1 is convertible to T!',
generate potential bindings 'T' and 'T?' for $T1, but not 'T!'. This
prevents variables without explicit type information from ending up with
IUO type. It also prevents implicit instantiation of functions and types
with IUO type arguments.
* [SE-0054] Remove the -disable-infer-iuos flag.
* Add nonnull annotations to ObjectiveCTests.h in benchmark suite.
This adds an Android target for the stdlib. It is also the first
example of cross-compiling outside of Darwin.
Mailing list discussions:
1. https://lists.swift.org/pipermail/swift-dev/Week-of-Mon-20151207/000171.html
2. https://lists.swift.org/pipermail/swift-dev/Week-of-Mon-20151214/000492.html
The Android variant of Swift may be built using the following `build-script`
invocation:
```
$ utils/build-script \
-R \ # Build in ReleaseAssert mode.
--android \ # Build for Android.
--android-ndk ~/android-ndk-r10e \ # Path to an Android NDK.
--android-ndk-version 21 \
--android-icu-uc ~/libicu-android/armeabi-v7a/libicuuc.so \
--android-icu-uc-include ~/libicu-android/armeabi-v7a/icu/source/common \
--android-icu-i18n ~/libicu-android/armeabi-v7a/libicui18n.so \
--android-icu-i18n-include ~/libicu-android/armeabi-v7a/icu/source/i18n/
```
Android builds have the following dependencies, as can be seen in
the build script invocation:
1. An Android NDK of version 21 or greater, available to download
here: http://developer.android.com/ndk/downloads/index.html.
2. A libicu compatible with android-armv7.
Implements SE-0055: https://github.com/apple/swift-evolution/blob/master/proposals/0055-optional-unsafe-pointers.md
- Add NULL as an extra inhabitant of Builtin.RawPointer (currently
hardcoded to 0 rather than being target-dependent).
- Import non-object pointers as Optional/IUO when nullable/null_unspecified
(like everything else).
- Change the type checker's *-to-pointer conversions to handle a layer of
optional.
- Use 'AutoreleasingUnsafeMutablePointer<NSError?>?' as the type of error
parameters exported to Objective-C.
- Drop NilLiteralConvertible conformance for all pointer types.
- Update the standard library and then all the tests.
I've decided to leave this commit only updating existing tests; any new
tests will come in the following commits. (That may mean some additional
implementation work to follow.)
The other major piece that's missing here is migration. I'm hoping we get
a lot of that with Swift 1.1's work for optional object references, but
I still need to investigate.