The conformance lookup table is responsible for answering queries
about the protocols to which a particular nominal type conforms, so
stop storing (redundant and incorrect) protocol lists on the ASTs for
nominal types. Protocol types still store the list of protocols that
they inherit, however.
As a drive-by, stop lying about the number of bits that ProtocolDecl
uses on top of NominalTypeDecl, and move the overflow bits down into
ProtocolDecl itself so we don't bloat Decl unnecessarily.
Swift SVN r31381
These never appear in Swift code, but they can appear when serializing the
full output of SILGen ("SIB" format) because that includes code synthesized
for imported Clang declarations.
rdar://problem/22098491
Swift SVN r31364
This provides better AST fidelity through module files and further
reduces our dependencies on storing a list of protocols on nominal
type declarations.
Swift SVN r31345
This improves the fidelity of the AST printed from a loaded module, as
well as consistency in the AST. Also teach the Clang importer to add
"inherited" clauses, providing better fidelity for the mapping from
Objective-C to Swift.
With trivial update to SDKAnalyzer test.
Swift SVN r31344
This improves the fidelity of the AST printed from a loaded module, as
well as consistency in the AST. Also teach the Clang importer to add
"inherited" clauses, providing better fidelity for the mapping from
Objective-C to Swift.
Swift SVN r31337
We're no longer using this information for generic type parameters or
associated types, so there's no point in leaving this honeypot
around. Note that this information is redundant with what's in the
conformance lookup table already, so it will be going away soon.
Swift SVN r31334
This is a step toward weeding out the "getProtocols()" list on
TypeDecl. Now, use the Archetype's list of protocols for the set of
protocols to which the type parameter or associated type
conforms. Since that list is fully canonicalized, it's more generally
reliable. However, start serializing the list of inherited types for a
generic type parameter, so we can print it appropriately.
Swift SVN r31297
If the compiler can prove that a throwing function actually does not throw it can
replace a try_apply with an "apply [nothrow]". Such an apply_inst calls a function
with an error result but does not have the overhead of checking for the error case.
Currently this flag is not set, yet.
Swift SVN r31151
Requiring a variadic parameter to come at the end of the parameter
list is an old restriction that makes no sense nowadays, and which we
had all thought we had already lifted. It made variadic parameters
unusable with trailing closures or defaulted arguments, and made our
new print() design unimplementable.
Remove this restriction, replacing it with a less onerous and slightly
less silly restriction that we not have more than one variadic
parameter in a given parameter clause. Fixes rdar://problem/20127197.
Swift SVN r30542
Core Data synthesizes Key-Value-Coding-compliant accessors for @NSManaged
properties, but Swift won't allow them to be called without predeclaring
them.
In practice, '@NSManaged' on a method is the same as 'dynamic', except
you /can't/ provide a body and overriding it won't work. This is not the
long-term model we want (see rdar://problem/20829214), but it fixes a
short-term issue with an unfortunate workaround (go through
mutableOrderedSetValueForKey(_:) and similar methods).
rdar://problem/17583057
Swift SVN r30523
This flag is required for performing the propagation of global and static "let" values into their uses.
Let variables have now a [let] attribute in the SIL textual form.
Swift SVN r30153
Add a new convention to describe what happens with
nonzero_result on a type that isn't imported as Bool.
This isn't really a safe convention to implement, but
calls are fine.
Implements <rdar://21715350>.
Swift SVN r29953
Represents a heap allocation containing a value of type T, which we'll be able to use to represent the payloads of indirect enum cases, and also improve codegen of current boxes, which generates non-uniqued box metadata on every allocation, which is dumb. No codegen changes or IRGen support yet; that will come later.
This time, fix a paste-o that caused SILBlockStorageTypes to get replaced with SILBoxTypes during type substitution. Oops.
Swift SVN r29489
Represents a heap allocation containing a value of type T, which we'll be able to use to represent the payloads of indirect enum cases, and also improve codegen of current boxes, which generates non-uniqued box metadata on every allocation, which is dumb. No codegen changes or IRGen support yet; that will come later.
Swift SVN r29474
That's how everything behaved anyway. Might as well make it explicit and
stop special-casing it.
I've left in compatibility for modules built with older compilers so that
people using the OS toolchains aren't immediately unable to debug their apps.
As soon as we change the module format in a more significant way, I can take
this out.
Groundwork for rdar://problem/21254367; see next commit.
Swift SVN r29437
Based on Dave’s hack, this allows one to define a “default implementation” as, e.g.,
protocol P {
func foo()
}
extension P {
final func foo() { … }
}
Swift SVN r28949
This came out of today's language review meeting.
The intent is to match #available with the attribute
that describes availability.
This is a divergence from Objective-C.
Swift SVN r28484
Now that we don't have generic parameter lists at arbitrary positions
within the extended type of an extension declaration, simplify the
representation of the extended type down to a TypeLoc along with a
(compiler-synthesized) generic parameter list.
On the parsing side, just parse a type for the extended type, rather
than having a special grammar. We still reject anything that is not a
nominal type (of course), but it's simpler just to call it a type.
As a drive-by, fix the crasher when extending a type with module
qualification, rdar://problem/20900870.
Swift SVN r28469
When reading the generic parameters of a constrained protocol
extension, cross-refencing an associated type would perform name
lookup into the protocol extension itself, causing fatal recursion
during deserialization. Fixed by avoiding additional deserialization
when looking for an associated type. Fixes rdar://problem/20812303.
Swift SVN r28228
Rather than swizzle the superclass of these bridging classes at +load time, have the compiler set their ObjC runtime base classes, using a "@_swift_native_objc_runtime_base" attribute that tells the compiler to use a different implicit base class from SwiftObject. This lets the runtime shed its last lingering +loads, and should overall be more robust, since it doesn't rely on static initialization order or deprecated ObjC runtime calls.
Swift SVN r28219
preserve the original method name.
This heuristic is based on the Objective-C selector and therefore
doesn't really handle factory methods that would conflict with
initializers, but we can hope that those simply don't come up in
the wild.
It's not clear that this is the best thing to do --- it tends to
promote the non-throwing API over what's probably a newer, throwing
API --- but it's significantly easier, and it unblocks code without
creating deployment problems.
Swift SVN r28066
@warn_unused_result can be attached to function declarations to
produce a warning if the function is called but its result is not
used. It has two optional parameters that can be placed in
parentheses:
message="some message": a message to include with the warning.
mutable_variant="somedecl": the name of the mutable variant of the
method that should be suggested when the subject method is called on
a mutable value.
The specific use we're implementing this for now is for the mutating
and in-place operations. For example:
@warn_unused_result(mutable_variant="sortInPlace") func sort() -> [Generator.Element] { ... }
mutating func sortInPlace() { ... }
Translate Clang's __attribute__((warn_unused_result)) into
@warn_unused_result.
Implements rdar://problem/18165189.
Swift SVN r28019
Printing a module as Objective-C turns out to be a fantastic way to
verify the (de-)serialization of foreign error conventions, so
collapse the parsing-driving Objective-C printing test of throwing
methods into the general test for methods.
Swift SVN r27880
Printing a module as Objective-C turns out to be a fantastic way to
verify the (de-)serialization of foreign error conventions, so
collapse the parsing-driving Objective-C printing test of throwing
methods into the general test for methods.
Swift SVN r27870
Extensions cannot be uniquely cross-referenced, so cross-references to
extensions are serialized with the extended nominal type name and the
module in which the extension resides. This is not sufficient when
cross-referencing the generic type parameters of a constrained
protocol extension, because we don't know whether to get the
archetypes of the nominal type or some extension thereof. Serialize
the canonical generic signature so that we can pick an extension with
the same generic signature; it doesn't matter which we pick, so long
as we're consistent.
Fixes rdar://problem/20680169. Triggering this involves some
interesting interactions between the optimizer and standard library;
the standard library updates in the radar will test this.
Swift SVN r27825
the printed interface.
Previously we printed the typechecked and uniqued requirements and the result was non-sensical.
Long-term the requirements will be preserved in a better form but for now print the requirements
and serialize them.
rdar://19963093
Swift SVN r27680
Allow an unversioned 'deprecated' attribute to specify unconditional
deprecation of an API, e.g.,
@availability(*, deprecated, message="sorry")
func foo() { }
Also support platform-specific deprecation, e.g.,
@availability(iOS, deprecated, message="don't use this on iOS")
func bar() { }
Addresses rdar://problem/20562871.
Swift SVN r27355
Allow an unversioned 'deprecated' attribute to specify unconditional
deprecation of an API, e.g.,
@availability(*, deprecated, message="sorry")
func foo() { }
Also support platform-specific deprecation, e.g.,
@availability(iOS, deprecated, message="don't use this on iOS")
func bar() { }
Addresses rdar://problem/20562871.
Swift SVN r27339
This is an internal-only affordance for the numerics team to be able to work on SIMD-compatible types. For now, it can only increase alignment of fixed-layout structs and enums; dynamic layout, classes, and other obvious extensions are left to another day when we can design a proper layout control design.
Swift SVN r27323
Currently untestable (due to SILGen's inability to handle throwing
@objc methods), but testing will become trivial once that's in place.
Swift SVN r27294
Currently untestable (due to SILGen's inability to handle throwing
@objc methods), but testing will become trivial once that's in place.
Swift SVN r27290
These aren't really orthogonal concerns--you'll never have a @thick @cc(objc_method), or an @objc_block @cc(witness_method)--and we have gross decision trees all over the codebase that try to hopscotch between the subset of combinations that make sense. Stop the madness by eliminating AbstractCC and folding its states into SILFunctionTypeRepresentation. This cleans up a ton of code across the compiler.
I couldn't quite eliminate AbstractCC's information from AST function types, since SIL type lowering transiently created AnyFunctionTypes with AbstractCCs set, even though these never occur at the source level. To accommodate type lowering, allow AnyFunctionType::ExtInfo to carry a SILFunctionTypeRepresentation, and arrange for the overlapping representations to share raw values.
In order to avoid disturbing test output, AST and SILFunctionTypes are still printed and parsed using the existing @thin/@thick/@objc_block and @cc() attributes, which is kind of gross, but lets me stage in the real source-breaking change separately.
Swift SVN r27095
"Autoclosure" is uninteresting to SIL. "noescape" isn't currently used by SIL and we shouldn't have it until it has a meaningful effect on SIL. "throws" should be adequately represented by a SIL function type having an error result.
Swift SVN r27023
to represent them, and just dropped them on the ground. Now we parse them,
persist them in the AST, and "resolve" them from the expr grammar, but still
drop them on the ground. This is progress towards fixing: rdar://20135489
Swift SVN r26828
The new base class ApplyInstBase contains APIs that are common for ApplyInst and PartialApplyInst. It allows such optimization passes like generic specializer to treat both instructions in the same way whenever it is possible. Before this change, one had to duplicate and adjust a lot of implementation code in such passes, because ApplyInst and PartialApplyInst were not related to each other in any form.
The existing clients of both classes can continue using the usual APIs. No changes are required. Only new clients, which want to treat ApplyInst and PartialApplyInst in a uniform way, may do so. One of such new clients is the generic specializer, whose adjusted implementation will be submitted in the following commit.
Swift SVN r26581