Align the grammar of macro declarations with SE-0382, so that macro
definitions are parsed as an expression. External macro definitions
are referenced via a referenced to the macro `#externalMacro`. Define
that macro in the standard library, and recognize uses of it as the
definition of other macros to use externally-defined macros. For
example, this means that the "stringify" macro used in a lot of
examples is now defined as something like this:
@expression macro stringify<T>(_ value: T) -> (T, String) =
#externalMacro(module: "MyMacros", type: "StringifyMacro")
We still parse the old "A.B" syntax for two reasons. First, it's
helpful to anyone who has existing code using the prior syntax, so they
get a warning + Fix-It to rewrite to the new syntax. Second, we use it
to define builtin macros like `externalMacro` itself, which looks like this:
@expression
public macro externalMacro<T>(module: String, type: String) -> T =
Builtin.ExternalMacro
This uses the same virtual `Builtin` module as other library builtins,
and we can expand it to handle other builtin macro implementations
(such as #line) over time.
Local discriminators for named entities are currently being set by the
parser, so entities not created by the parser (e.g., that come from
synthesized code) don't get local discriminators. Moreover, there is
no checking to ensure that every named local entity gets a local
discriminator, so some entities would incorrectly get a local
discriminator of 0.
Assign local discriminators as part of setting closure discriminators,
in response to a request asking for the local discriminator, so the
parser does not need to track this information, and all local
declarations---including synthesized ones---get local discriminators.
And add checking to make sure that every entity that needs a local
discriminator gets assigned one.
There are a few interesting cases in here:
* There was a potential mangling collision with local property
wrappers because their generated variables weren't getting local
discriminators
* $interpolation variables introduced for string interpolation weren't
getting local discriminators, they were just wrong.
* "Local rename" when dealing with captures like `[x]` was dependent on
the new delcaration of `x` *not* getting a local discriminator. There
are funny cases involving nesting where it would do the wrong thing.
I am adding this to make it easy to determine if a SILFunction that is not inout
aliasable is captured. This is useful when emitting certain types of
diagnostics like I need to emit with move only.
`getValue` -> `value`
`getValueOr` -> `value_or`
`hasValue` -> `has_value`
`map` -> `transform`
The old API will be deprecated in the rebranch.
To avoid merge conflicts, use the new API already in the main branch.
rdar://102362022
So far, function effects only included escape effects.
This change adds side-effects (but they are not computed, yet).
It also involves refactoring of the existing escape effects.
Also the SIL effect syntax changed a bit. Details are in docs/SIL.rst
* [SILOptimizer] Add prespecialization for arbitray reference types
* Fix benchmark Package.swift
* Move SimpleArray to utils
* Fix multiple indirect result case
* Remove leftover code from previous attempt
* Fix test after rebase
* Move code to compute type replacements to SpecializedFunction
* Fix ownership when OSSA is enabled
* Fixes after rebase
* Changes after rebasing
* Add feature flag for layout pre-specialization
* Fix pre_specialize-macos.swift
* Add compiler flag to benchmark build
* Fix benchmark SwiftPM flags
Specifically, we get an additional table like thing called sil_moveonlydeinit. It looks as follows:
sil_moveonlydeinit TYPE {
@FUNC_NAME
}
It always has a single entry.
So far, argument effects were printed in square brackets before the function name, e.g.
```
sil [escapes !%0.**, !%1, %1.c*.v** => %0.v**] @foo : $@convention(thin) (@guaranteed T) -> @out S {
bb0(%0 : $*S, %1 : @guaranteed $T):
...
```
As we are adding more argument effects, this becomes unreadable.
To make it more readable, print the effects after the opening curly brace, and print a separate line for each argument. E.g.
```
sil [ossa] @foo : $@convention(thin) (@guaranteed T) -> @out S {
[%0: noescape **]
[%1: noescape, escape c*.v** => %0.v**]
bb0(%0 : $*S, %1 : @guaranteed $T):
...
```
This is a dedicated instruction for incrementing a
profiler counter, which lowers to the
`llvm.instrprof.increment` intrinsic. This
replaces the builtin instruction that was
previously used, and ensures that its arguments
are statically known. This ensures that SIL
optimization passes do not invalidate the
instruction, fixing some code coverage cases in
`-O`.
rdar://39146527
Include the parent `ModuleDecl` when serializing a `SILFunction` so that it is available on deserialized functions even though the full `DeclContext` is not present. With the parent module always available we can reliably compute whether the `SILFunction` comes from a module that was imported `@_weakLinked`.
Serialize the `DeclContext` member of `SILFunction` so that it can be used to look up the module that a function belongs to in order to compute weak import status.
Resolves rdar://98521248
This is exactly like copy_addr except that it is not viewed from the verifiers
perspective as an "invalid" copy of a move only value. It is intended to be used
in two contexts:
1. When the move checker emits a diagnostic since it could not eliminate a copy,
we still need to produce valid SIL without copy_addr on move only types since we
will hit canonical SIL eventually even if we don't actually codegen the SIL. The
pass can just convert said copy_addr to explicit_copy_addr and everyone is
happy.
2. To implement the explicit copy function for address only types.
This attribute will, in the near future, be used to inform IRGen that a nominal type that conforms to such protocol must have its type metadata always emitted into the binary, regardless of whether it is used/public.
Local types are not ABI, and the only time we care about the mangling here is
when we look them up using the DWARF mangling in debug info, which doesn't
respect @_originallyDefinedIn either.
Fixes https://github.com/apple/swift/issues/59773.
Since I am beginning to prepare for adding real move only types to the language,
I am renaming everything that has to do with copyable types "move only wrapped"
values instead of move only. The hope is this reduces/prevents any confusion in
between the two.