When a class has an unavailable conformance to a protocol, do not
inherit that unavailable conformance, because it can get in the way of
subclasses defining their own (properly-available) conformance.
Fixes rdar://89992569.
Many, many, many types in the Swift compiler are intended to only be allocated in the ASTContext. We have previously implemented this by writing several `operator new` and `operator delete` implementations into these types. Factor those out into a new base class instead.
It's been quite a long time since this unused parameter was introduced.
The intent is to produce the module as a root for the search - that is,
computing the set of conformances visible from that module, not the set
of conformances inside of that module. Callers have since been providing
all manner of module-scoped contexts to it.
Let's just get rid of it. When we want to teach protocol conformance
lookup to do this, we can revert this commit as a starting point and try
again.
Parse and provide semantic checking for '@unchecked Sendable', for a
Sendable conformance that doesn't perform additional semantic checks
for correctness.
Part of rdar://78269000.
The uncached, rarely-used getLocalProtocols() does not benefit from
having its own distinct implementation. Reimplement it on top of
getLocalConformances() to simplify things and benefit from the
request-evaluator infrastructure.
By convention, most structs and classes in the Swift compiler include a `dump()` method which prints debugging information. This method is meant to be called only from the debugger, but this means they’re often unused and may be eliminated from optimized binaries. On the other hand, some parts of the compiler call `dump()` methods directly despite them being intended as a pure debugging aid. clang supports attributes which can be used to avoid these problems, but they’re used very inconsistently across the compiler.
This commit adds `SWIFT_DEBUG_DUMP` and `SWIFT_DEBUG_DUMPER(<name>(<params>))` macros to declare `dump()` methods with the appropriate set of attributes and adopts this macro throughout the frontend. It does not pervasively adopt this macro in SILGen, SILOptimizer, or IRGen; these components use `dump()` methods in a different way where they’re frequently called from debugging code. Nor does it adopt it in runtime components like swiftRuntime and swiftReflection, because I’m a bit worried about size.
Despite the large number of files and lines affected, this change is NFC.
This reverts part of #4038 which made the compiler consider it to be an `Explicit` conformance, breaking source code that was accepted in Swift 3.0 which declared a raw type as well as explicit conformance to `RawRepresentable` (reported as rdar://problem/30386658). While I'm here, a couple of spot fixes:
- Ensure an enum's raw value exprs are type-checked before checking conformances of any of its extensions, since the RawRepresentable conformance derivation will blow up if the raw value exprs haven't been checked. Fixes an order dependency issue if `extension Foo: RawRepresentable {}` gets checked before `enum Foo: Int { ... }`.
- Don't display the custom `enum_declares_rawrep_with_raw_type` diagnostic if the source location for the enum's inheritance clause is invalid, so that we don't emit a dislocated diagnostic.
Previously, we would only reliably propagate conformances from new extensions to immediate subclasses, since when we visit grandchild classes, we'd see no change in the immediate base class's status. Fix this by walking up the entire superclass chain when we look for new inherited conformances, and track the last processed state of different nominal type decls' extensions separately. Fixes SR-1480.