The main piece that's still missing here is support for closures;
they actually mostly work, but they infer the wrong isolation for
actor-isolated closures (it's not expressed in the type, so obviously
they're non-isolated), so it's not really functional. We also have
a significant problem where reabstraction thunks collide incorrectly
because we don't mangle (or represent!) formal isolation into
SILFunctionType; that's another follow-up. Otherwise, I think SILGen
is working.
This generates significantly better code directly out of SILGen, at
the cost of having to reimplement a little bit of the argument-emission
logic to handle default arguments. But it also neatly sidesteps the
problems we have with splitting tuple RValues when the tuple contains
a pack expansion, which will require some significant surgery to RValue
to fix. That, in turn, fixes rdar://121489308.
The thunk is a reabstraction thunk with a custom prolog that
has a runtime precondition check that makes sure that concurrent
environment where the thunk is run matches that of a global
actor associated with the thunked type.
Allow the use of typed throws for the main functions of `@main` types,
and thread the thrown error through to a new entry point in the library,
`_errorInMainTyped`, which is generic in the thrown error type.
Fixes rdar://121603043.
For `@preconcurrency` conformance witness thunks replace hop to
executor with a precondition to make sure that the thunk is always
called in the expected context.
Introduce SILGen support for reabstractions thunks that change the
error, between indirect and direct errors as well as conversions
amongst error types (e.g., from concrete to `any Error`).
Lower the thrown error type into the SIL function type. This requires
very little code because the thrown error type was already modeled as
a SILResultInfo, which carries type information. Note that this
lowering does not yet account for error types that need to passed
indirectly, but we will need to do so for (e.g.) using resilient error
types.
Teach a few places in SIL generation not to assume that thrown types
are always the existential error type, which primarily comes down to
ensuring that rethrow epilogues have the thrown type of the
corresponding function or closure.
Teach throw emission to implicitly box concrete thrown errors in the
error existential when needed to satisfy the throw destination. This
is a temporary solution that helps translate typed throws into untyped
throws, but it should be replaced by a better modeling within the AST
of the points at which thrown errors are converted.
The result-reabstraction code doesn't need to handle cleanups properly
during the planning phase because of course we don't have any values
yet. That is not true of argument reabstraction, so we need to make
sure that the recursive emitters can produce values with cleanups
so that we can collect and forward those cleanups correctly when
emitting the call.
As part of this, I've changed the code so that it should forward
outer addresses to inner address more consistently; it wouldn't
have done this before if we were breaking apart or assembling
a pack. I'm not sure I can directly test this without figuring
out a way to get SILGen to reabstract both sides of a function,
though.
I'm not sure this is really doing borrowed vs owned arguments
correctly, if e.g. we need to rebstract one component of a tuple
that's otherwise borrowed.
Instead of taking a setter type, let's switch over to a more general
`AccessorKind` which allows us to cover init accessors and simplify
`emitApplySetterToBase`.
This is a preliminary step towards enabling default initialization of
init accessor properties in user-defined initializers because this logic
would have to be shared by multiple places during SILGen.
`Initialization` is stateful and not meant to be emitted into multiple times across different contexts.
If emitting into an initialization causes it to be split or aborted, that will carry over into
further uses of the initialization. This was happening during `if` and `switch` expression
emission, leading to miscompiles or compiler crashes. Fix this by saving only the buffer when
we prepare emission for a statement expression, and creating the initialization in the scope
where the expression for a branch actually gets emitted. Fixes rdar://112213253.
Reformatting everything now that we have `llvm` namespaces. I've
separated this from the main commit to help manage merge-conflicts and
for making it a bit easier to read the mega-patch.
This is phase-1 of switching from llvm::Optional to std::optional in the
next rebranch. llvm::Optional was removed from upstream LLVM, so we need
to migrate off rather soon. On Darwin, std::optional, and llvm::Optional
have the same layout, so we don't need to be as concerned about ABI
beyond the name mangling. `llvm::Optional` is only returned from one
function in
```
getStandardTypeSubst(StringRef TypeName,
bool allowConcurrencyManglings);
```
It's the return value, so it should not impact the mangling of the
function, and the layout is the same as `std::optional`, so it should be
mostly okay. This function doesn't appear to have users, and the ABI was
already broken 2 years ago for concurrency and no one seemed to notice
so this should be "okay".
I'm doing the migration incrementally so that folks working on main can
cherry-pick back to the release/5.9 branch. Once 5.9 is done and locked
away, then we can go through and finish the replacement. Since `None`
and `Optional` show up in contexts where they are not `llvm::None` and
`llvm::Optional`, I'm preparing the work now by going through and
removing the namespace unwrapping and making the `llvm` namespace
explicit. This should make it fairly mechanical to go through and
replace llvm::Optional with std::optional, and llvm::None with
std::nullopt. It's also a change that can be brought onto the
release/5.9 with minimal impact. This should be an NFC change.
drop_deinit ultimately only affects the semantics of its
destroy_value. Avoid generating releases for destroys in which the
deinit has been dropped. Instead, individually release the members.
The previous code made the assumption that the ASTScope for a variable
declaration should be the one of the declaration's source location. That is not
necessarily the case, in some cases it should be an ancestor scope. This patch
introduces a map from ValueDecl -> ASTScope that is derived from querying each
ASTScope for its locals, which matches also what happens in name lookup. This
patch also fixes the nesting of SILDebugScopes created for guard statement
bodies, which are incorrectly nested in the ASTScope hierarchy.
rdar://108940570
When `-unavailable-decl-optimization=stub` is specified, insert a call to
`_diagnoseUnavailableCodeReached()` at the beginning of the function to cause
it to trap if executed at run time.
Part of rdar://107388493
Before this patch the parents of SILDebugScopes representing macro expansions
were missing the inlinedAt field, which resulted in incorrent LLVM IR being
produced. This is fixed by first computing the inlined call site for a macro
expansion and then computing the nested SILDebugScope for the ASTScope of the
expanded nodes; adding the inlinedAt field to all of levels of parent scopes.
rdar://108323748
This patch replaces the stateful generation of SILScope information in
SILGenFunction with data derived from the ASTScope hierarchy, which should be
100% in sync with the scopes needed for local variables. The goal is to
eliminate the surprising effects that the stack of cleanup operations can have
on the current state of SILBuilder leading to a fully deterministic (in the
sense of: predictible by a human) association of SILDebugScopes with
SILInstructions. The patch also eliminates the need to many workarounds. There
are still some accomodations for several Sema transformation passes such as
ResultBuilders, which don't correctly update the source locations when moving
around nodes. If these were implemented as macros, this problem would disappear.
This necessary rewrite of the macro scope handling included in this patch also
adds proper support nested macro expansions.
This fixes
rdar://88274783
and either fixes or at least partially addresses the following:
rdar://89252827
rdar://105186946
rdar://105757810
rdar://105997826
rdar://105102288
Code can only locally interact with a mutable memory location within a
formal access, and is only responsible for maintaining its invariants
during that access, so the move-only address checker does not need to,
and should not, observe operations that occur outside of the access
marked with the `mark_must_check` instruction. And for immutable
memory locations, although there are no explicit formal accesses, that's
because every access must be read-only, so although individual
accesses are not delimited, they are all compatible as far as
move-only checking is concerned. So we can back out the changes to SILGen
to re-project a memory location from its origin on every access, a
change which breaks invariants assumed by other SIL passes.
This adds an assertion that we're using all of the parameters, so
pass prolog emission the number of lowered parameters to ignore.
That's easy for the callers to provide, since they do actually
still need to add function arguments for those parameters.
This is largely a matter of changing the main loop over subst
params in TranslateArguments to use the generators I added,
then plugging back into the general reabstraction infrastructure.
Because we don't have pack coroutines, we're kind of stuck in
the code generation for pack reabstraction: we have to write
+1 r-values into a temporary tuple and then write those tuple
element addresses into the output pack. It's not great. We
also have lifetime problems with things like non-escaping
closures --- we have that problem outside of reabstraction
thunks, too.
Other than that glaring problem, I'm feeling relatively good
about the code here. It's missing some peepholes, but it should
work. But that that's not to say that arity reabstraction works
in general; my attempts to test it have been exposing some
problems elsewhere, and in particular the closure case crashes,
which is really bad. But this gets a few more things working,
and this PR is quite large already.
The subexpression of a MaterializePackExpr (which is always a tuple value
currently) is emitted while preparing to emit a pack expansion expr, and its
elements are projected from within the dynamic pack loop. This means that a
materialized pack is only evaluated once, rather than being evaluated on
every iteration over the pack elements.
More missing infrastructure. In this case, it's really *existing*
missing infrastructure, though; we should have been imploding tuples
this way all along, given that we're doing it in the first place.
I don't like that we're doing all these extra tuple copies. I'm not
sure yet if they're just coming out of SILGen and eliminated immediately
after in practice; maybe so. Still, it should be obvious that they're
unnecessary.