https://forums.swift.org/t/improving-the-representation-of-polymorphic-interfaces-in-sil-with-substituted-function-types/29711
This prepares SIL to be able to more accurately preserve the calling convention of
polymorphic generic interfaces by letting the type system represent "substituted function types".
We add a couple of fields to SILFunctionType to support this:
- A substitution map, accessed by `getSubstitutions()`, which maps the generic signature
of the function to its concrete implementation. This will allow, for instance, a protocol
witness for a requirement of type `<Self: P> (Self, ...) -> ...` for a concrete conforming
type `Foo` to express its type as `<Self: P> (Self, ...) -> ... for <Foo>`, preserving the relation
to the protocol interface without relying on the pile of hacks that is the `witness_method`
protocol.
- A bool for whether the generic signature of the function is "implied" by the substitutions.
If true, the generic signature isn't really part of the calling convention of the function.
This will allow closure types to distinguish a closure being passed to a generic function, like
`<T, U> in (*T, *U) -> T for <Int, String>`, from the concrete type `(*Int, *String) -> Int`,
which will make it easier for us to differentiate the representation of those as types, for
instance by giving them different pointer authentication discriminators to harden arm64e
code.
This patch is currently NFC, it just introduces the new APIs and takes a first pass at updating
code to use them. Much more work will need to be done once we start exercising these new
fields.
This does bifurcate some existing APIs:
- SILFunctionType now has two accessors to get its generic signature.
`getSubstGenericSignature` gets the generic signature that is used to apply its
substitution map, if any. `getInvocationGenericSignature` gets the generic signature
used to invoke the function at apply sites. These differ if the generic signature is
implied.
- SILParameterInfo and SILResultInfo values carry the unsubstituted types of the parameters
and results of the function. They now have two APIs to get that type. `getInterfaceType`
returns the unsubstituted type of the generic interface, and
`getArgumentType`/`getReturnValueType` produce the substituted type that is used at
apply sites.
Switch most callers to explicit indices. The exceptions lie in things that needs to manipulate the parsed output directly including the Parser and components of the ASTScope. These are included as friend class exceptions.
Use the newly-introduced property wrapper backing initializer function
in definite initialization (DI) to form the assign_by_wrapper
instruction, rather than forming a reference to the (only) property
wrapper's `init(wrappedValue:)`. This allows DI to work on properties
that have multiple, composed property wrappers applied to them.
Teach SILGen to emit a separate SIL function to capture the
initialization of the backing storage type for a wrapped property
based on the wrapped value. This eliminates manual code expansion at
every use site.
Unfortuantely this commit is bigger than I would like but I couldn't think
of any reasonable ways to split it up.
The general idea here is that capture computation is now done for a
SILDeclRef and not an AnyFunctionRef. This allows SIL to represent the
captures of a default argument generator.
This removes an intricate set of invariants that must be kept consistent
between Parse and SILGen. It will also make it easier to implement local
variables with 'lazy' and property wrappers in the future.
Assign separate SILProfiler instances to stored property initializers
and constructors.
Starting with rdar://39460313, coverage reporting for these constructs
was bundled up into a single SILProfiler uniqued by the NominalTypeDecl.
There are two problems with doing this.
First, the shared SILProfiler is given a fake name that can't be
demangled. That breaks Xcode's reports. Second, the relationship
between SILProfiler and SILFunction is supposed to be 1:1. Having a
shared SILProfiler muddies things a bit and requires extra bookkeeping.
rdar://47467864
If an override B.f() is more visible than a base method A.f(), it is
possible that an override C.f() of B.f() cannot see the original method
A.f().
In this case, we would encounter linker errors if we referenced the
method descriptor or method dispatch thunk for A.f().
Make this work by treating B.f() as the least derived method in this
case, and ensuring that the vtable thunk for B.f() dispatches through
the vtable again.
Fixes <rdar://problem/48330571>, <https://bugs.swift.org/browse/SR-10648>.
When checking if a vtable override is ABI compatible with the
base class method, make sure to check yields too.
Also, add support for coroutines to vtable thunks, using code
that I've copy and pasted and tweaked from witness thunks.
(It would be nice to combine witness thunks and vtable thunks
into a single code path for 'method thunks', but that requires
some additional refactoring, so live with the copy and paste
for now).
OpaqueValueState used to store a SILValue, so back then the IsConsumable flag
was meaningful. But now we can just check if the ManagedValue has a cleanup
or not.
Also, we were passing around an opened ArchetypeType for no good reason.
The ownership kind is Any for trivial types, or Owned otherwise, but
whether a type is trivial or not will soon depend on the resilience
expansion.
This means that a SILModule now uniques two SILUndefs per type instead
of one, and serialization uses two distinct sentinel IDs for this
purpose as well.
For now, the resilience expansion is not actually used here, so this
change is NFC, other than changing the module format.
The bulk of the changes are to SILGenApply. As we must now evaluate the
payload ArgumentSource to an RValue, we follow the example of subscripts
and lie to the argument emitter. This evaluates arguments at +1 which
can lead to slightly worse codegen at -Onone.
There are instances of currying that require full reabstraction,
such as when partially-applying a concrete override of a generic
class method.
Fixes rdar://45671537 and SR-4425.
Removes the _getBuiltinLogicValue intrinsic in favor of an open-coded
struct_extract in SIL. This removes Sema's last non-literal use of builtin
integer types and unblocks a bunch of cleanup.
This patch would be NFC, but it improves line information for conditional expression codegen.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Dynamic replacements are currently written in extensions as
extension ExtendedType {
@_dynamicReplacement(for: replacedFun())
func replacement() { }
}
The runtime implementation allows an implementation in the future where
dynamic replacements are gather in a scope and can be dynamically
enabled and disabled.
For example:
dynamic_extension_scope CollectionOfReplacements {
extension ExtentedType {
func replacedFun() {}
}
extension ExtentedType2 {
func replacedFun() {}
}
}
CollectionOfReplacements.enable()
CollectionOfReplacements.disable()
Avoid emitting unnecessary basic block for cleanup chains. This is a
general approach that handles all cases while simplifying SILGen
emission and keeping the CFG in a valid state during SILGen.
This code was attempting to generate a critical edge on one side of a
condition. Not only is that undesirable, but it breaks the abstraction
and results an a lot of complexity.
As usual, fixing critical edges simply means removing unnecessary complexity.
At the moment the location being reported is inside the standard
library, which is not very helpful. Instead, the location should point
at the `try!` expression in the application code.
Fixes: rdar://problem/21407683
This is NFC for now, but I plan to build on this to (1) immediately
remove some unnecessary materialization and loads of the base value
and (2) to allow clients to load a borrowed value.