This is an instruction that I am going to use to drive some of the ownership
based dataflow optimizations that I am writing now. The instruction contains a
kind that allows one to know what type of checking is required and allows the
need to add a bunch of independent instructions for independent checkers. Each
checker is responsible for removing all of its own mark instructions. NOTE:
MarkMustCheckInst is only allowed in Raw SIL since once we are in Canonical SIL
we want to ensure that all such checking has already occurred.
Introduce a new instruction `dealloc_stack_ref ` and remove the `stack` flag from `dealloc_ref`.
The `dealloc_ref [stack]` was confusing, because all it does is to mark the deallocation of the stack space for a stack promoted object.
There are three major changes here:
1. The addition of "SILFunctionTypeRepresentation::CXXMethod".
2. C++ methods are imported with their members *last*. Then the arguments are switched when emitting the IR for an application of the function.
3. Clang decls are now marked as foreign witnesses.
These are all steps towards being able to have C++ protocol conformance.
This instruction is similar to a copy_addr except that it marks a move of an
address that has to be checked. In order to keep the memory lifetime verifier
happy, the semantics before the checker runs are the mark_unresolved_move_addr is
equivalent to copy_addr [init] (not copy_addr [take][init]).
The use of this instruction is that Mandatory Inlining converts builtin "move"
to a mark_unresolved_move_addr when inlining the function "_move" (the only
place said builtin is invoked).
This is then run through a special checker (that is later in this PR) that
either proves that the mark_unresolved_move_addr can actually be a move in which
case it converts it to copy_addr [take][init] or if it can not be a move, emit
an error and convert the instruction to a copy_addr [init]. After this is done
for all instructions, we loop back through again and emit an error on any
mark_unresolved_move_addr that were not processed earlier allowing for us to
know that we have completeness.
NOTE: The move kills checker for addresses is going to run after Mandatory
Inlining, but before predictable memory opts and friends.
Rerun RLE with cutting off the base address of loads at `ref_element/tail_addr [immutable]`. This increases the chance of catching loads of immutable COW class properties or elements.
Required for UnsafeRawPointer.withMemoryReboud(to:).
%out_token = rebind_memory %0 : $Builtin.RawPointer to %in_token
%0 must be of $Builtin.RawPointer type
%in_token represents a cached set of bound types from a prior memory state.
%out_token is an opaque $Builtin.Word representing the previously bound
types for this memory region.
This instruction's semantics are identical to ``bind_memory``, except
that the types to which memory will be bound, and the extent of the
memory region is unknown at compile time. Instead, the bound-types are
represented by a token that was produced by a prior memory binding
operation. ``%in_token`` must be the result of bind_memory or
The key thing is that the move checker will not consider the explicit copy value
to be a copy_value that can be rewritten, ensuring that any uses of the result
of the explicit copy_value (consuming or other wise) are not checked.
Similar to the _move operator I recently introduced, this is a transparent
function so we can perform one level of specialization and thus at least be
generic over all concrete types.
Define the possible runtime effects of an instruction in an enum `RuntimeEffect`.
Add a new utility `swift:getRuntimeEffect` to estimate the runtime effects of an instruction.
Also, add a mechanism to validate the correctness of the analysis in IRGen: annotate all runtime functions in RuntimeFunctions.def with the actual effect what the runtime function has or can have. Then check if the effects of emitted runtime functions for an instruction match what `getRuntimeEffect` predicts.
This check is only enabled on demand by defining the CHECK_RUNTIME_EFFECT_ANALYSIS macro in RuntimeEffect.h
OSSA rauw cleans up end of scope markers before rauw'ing.
This can lead to inadvertant deleting of end_lifetime, later
resulting in an ownership verifier error indicating a leak.
This PR stops treating end_lifetime scope ending like end_borrow/end_access.
Determines whether an address might be inside a borrowed scope. If so,
then any address substitution needs to find that scope boundary to
avoid violating its basic guarantee that all uses are within scope.
It was originally convenient for exclusivity optimization to treat
boxes specially. We wanted to know that the 'Box' kind was always
uniquely identified. But that's not really important. And now that
AccessedStorage is being used more generally, the inconsistency is
problematic.
A consistent model is also must easier to understand and explain.
This also make the implementation of the utility simpler and more powerful.
Functional changes:
isRCIdentical will look through mark_dependence and mark_uninitialized.
findReferenceRoot is used consistently everywhere increasing analysis precision.
The reason why is that addresses from pointer_to_address never have transitive
interior pointer constraints from where ever the pointer originally came
from. This is the issue that was causing a CSE test to fail, so I added a test
to ossa_rauw_test that works this code path.
Specifically, I split it into 3 initial categories: IR, Utils, Verifier. I just
did this quickly, we can always split it more later if we want.
I followed the model that we use in SILOptimizer: ./lib/SIL/CMakeLists.txt vends
a macro (sil_register_sources) to the sub-folders that register the sources of
the subdirectory with a global state variable that ./lib/SIL/CMakeLists.txt
defines. Then after including those subdirs, the parent cmake declares the SIL
library. So the output is the same, but we have the flexibility of having
subdirectories to categorize source files.