This makes it easier to grep for and eventually remove the
remaining usages.
It also allows you to write FunctionType::get({}, ...) to call the
ArrayRef overload empty parameter list, instead of picking the Type
overload and calling it with an empty Type() value.
While I"m at it, in a few places instead of renaming just clean up
usages where it was completely mechanical to do so.
- getAsDeclOrDeclExtensionContext -> getAsDecl
This is basically the same as a dyn_cast, so it should use a 'getAs'
name like TypeBase does.
- getAsNominalTypeOrNominalTypeExtensionContext -> getSelfNominalTypeDecl
- getAsClassOrClassExtensionContext -> getSelfClassDecl
- getAsEnumOrEnumExtensionContext -> getSelfEnumDecl
- getAsStructOrStructExtensionContext -> getSelfStructDecl
- getAsProtocolOrProtocolExtensionContext -> getSelfProtocolDecl
- getAsTypeOrTypeExtensionContext -> getSelfTypeDecl (private)
These do /not/ return some form of 'this'; instead, they get the
extended types when 'this' is an extension. They started off life with
'is' names, which makes sense, but changed to this at some point. The
names I went with match up with getSelfInterfaceType and
getSelfTypeInContext, even though strictly speaking they're closer to
what getDeclaredInterfaceType does. But it didn't seem right to claim
that an extension "declares" the ClassDecl here.
- getAsProtocolExtensionContext -> getExtendedProtocolDecl
Like the above, this didn't return the ExtensionDecl; it returned its
extended type.
This entire commit is a mechanical change: find-and-replace, followed
by manual reformatted but no code changes.
Rather than validating the signature of any declaration found by
name lookup, first check whether there is a collision on the full name
of the declaration. This should result in fewer declaration validations.
That is, don't look through InOutType anymore, and update callers to
call getInOutObjectType() as well (or not, where it was obvious to me
that InOutType could not appear).
This surfaces more remaining uses of getInOutObjectType() directly.
This is a legacy holdover from when tuple types had default
arguments, and also the constraint solver's matching of function
types pre-SE-0110.
Well, move the last live usage to CSDiag, where it can die a slow
painful death over time. The other usages were not doing anything.
This either became dead shortly after the removal of Swift 3
compatibility mode from the constraint solver, or even earlier.
Note that the code completion test change is actually correct
because (Any) -> () is not convertible to () -> () in the
language.
In some cases, such as when pushing a collection conversion down to per-element conversions, we'll coerce a subtype metatype to AnyObject, as in:
```
func f(_: [AnyObject]) {}
f([NSString.self, NSObject.self]) // Type checks as [NSObject.Type] converted to [AnyObject]
```
and only record the restriction kinds used in the indirect steps NSString -> NSObject and NSObject.Type -> AnyObject without recording the jump from NSString.Type to AnyObject. coerceToType ought to apply this subtyping rule even without such a hint, though, since the restriction kind is intended only as an optimization. Fixes rdar://problem/42666956 .
Aim of this new diagnostic abstraction is to encapsulate each
individual failure into its own class with some shared base.
Good example of this - diagnostics related to generic requirement
failures, where each kind (conformance, same-type etc.) has
some specific logic e.g. diagnostic message but the all share
the same traits like affected declaration/requirement.
Since information comes from `Solution` anyway, it's good to have
that logic localized, but it's also useful for diagnostics based on
fixes attached to solutions.
While trying to diagnose missing conformances don't attempt
to lookup parameter position if the parent apply expression
is not available, which could happen when fixes are produced
as part of the sub-expression diagnostics.
If fixes are allowed let solver record missing protocol conformance
requirements and assume that `conformsTo` constraint is successfully
solved, this helps to diagnose such errors without involving
heavy-weight expression based diagnostics.
Resolves: rdar://problem/40537858
Once you’ve called a function and retrieved a result, IRGen will want
layout information for the result type. Make sure that the type checker
precomputes it.
This makes sure that the diagnostics appear in the stable order
which is closer to what users would expect e.g. evaluation
order, otherwise, because disjunctions are currently attempted
based on their size, ordering of error messages produced by
applying fixes is completely arbitrary.
Let the solver disregard missing argument labels and record correct
ones, so such problem could be diagnosed later on iff there were no
other more serious failures.
Implementation is as follows: In `preCheckExpression` try to
detect if there is `T(literal)` call in the AST, replace it with
implicit `literal as T`, while trying to form type-checked AST,
after constraint solving, restore source information and drop
unnecessary coercion expression.
Resolves: rdar://problem/17088188
Resolves: rdar://problem/39120081
Resolves: rdar://problem/23672697
Resolves: rdar://problem/40379985
Instead of mixing flags between type-checker and constraint solver, let's
move the ones which are useful in constraint system there. Doing
so allows for `solveForExpression` to be moved from `TypeChecker` to
`ConstraintSystem` which consolidates solver logic.
It also allows to set these flags as part of constraint generation/solving,
which is sometimes important.
Replace the last (and most obscure) use of the poor “use ‘?’ or ‘!’” diagnostic with the
new, more explanatory version that provides separate notes with Fix-Its for coalescing or
force-unwrapping the value.
Finishes rdar://problem/42081852.
Introduce a new fix kind into the constraint solver to cover unwrapping the base
of a member access so we can refer to the a member of the unwrapped base.
Wire this fix kind to the just-added diagnostic that suggests either the
chaining ‘?’ or the force-unwrap ‘!’ via separate, descriptive Fix-Its.
Example:
error: value of optional type 'X?' must be unwrapped to refer to member 'f' of wrapped base type 'X'
let _: Int = x.f()
^
note: chain the optional using '?' to access member 'f' only for non-'nil' base values
let _: Int = x.f()
^
?
note: force-unwrap using '!' to abort execution if the optional value contains 'nil'
let _: Int = x.f()
^
!
Before this, we would sometimes get a Fix-It for just ‘?’ and sometimes get a Fix-It for the
coalescing ‘??’, neither of which is likely to be right.
More work on rdar://problem/42081852.
When we determine that an optional value needs to be unwrapped to make
an expression type check, use notes to provide several different
Fix-It options (with descriptions) rather than always pushing users
toward '!'. Specifically, the errors + Fix-Its now looks like this:
error: value of optional type 'X?' must be unwrapped to a value of
type 'X'
f(x)
^
note: coalesce using '??' to provide a default when the optional
value contains 'nil'
f(x)
^
?? <#default value#>
note: force-unwrap using '!' to abort execution if the optional
value contains 'nil'
f(x)
^
!
Fixes rdar://problem/42081852.