* [Runtime] Switch MetadataCache to ConcurrentReadableHashMap.
Use StableAddressConcurrentReadableHashMap. MetadataCacheEntry's methods for awaiting a particular state assume a stable address, where it will repeatedly examine `this` in a loop while waiting on a condition variable, so we give it a stable address to accommodate that. Some of these caches may be able to tolerate unstable addresses if this code is changed to perform the necessary table lookup each time through the loop instead. Some of them store metadata inline and we assume metadata never moves, so they'll have to stay this way.
* Have StableAddressConcurrentReadableHashMap remember the last found entry and check that before doing a more expensive lookup.
* Make a SmallMutex type that stores the mutex data out of line, and use it to get LockingConcurrentMapStorage to fit into the available space on 32-bit.
rdar://problem/70220660
Add a new entry point for getting generic metadata which adds the
canonical metadata records attached to the nominal type descriptor to
the metadata cache.
Change the implementation of the primary entry-point
swift_getGenericMetadata to stop looking through canonical
prespecialized records.
Change the implementation of swift_getCanonicalSpecializedMetadata to
use the caching token attached to the nominal type descriptor to add
canonical prespecialized metadata records to the metadata cache only
once rather than using the cache variables to limit the number of times
the attempt was made.
* Dynamic Casting: Properly unwrap existential metatype sources
Existential metatypes are really just existentials that hold metatypes. As
such, they should be handled in the general casting logic in much the same way
as regular existentials: They should generally be ignored by most casting logic,
and unwrapped as necessary at the top level.
In particular, the previous code would fail to correctly handle the following
cast from an existential metatype (`AnyObject.Type`) to an existential
(`AnyObject`):
```
class C {}
let a = C.self as AnyObject.Type
let b = a as! AnyObject
```
With the old code, `b` above would hold a reference to a `__SwiftValue` box
containing the type reference. The correct result would simply store the type
reference directly in `b`. These two are only really distinguishable in that
the correct form permits `a === b` to return `true`.
Fixes rdar://70582753
Note: This is not yet fully supported on Linux. Basically, metatypes on Linux are not currently
fully compatible with reference-counted class pointers, which prevents us from
fully supporting metatype operations on Linux that we support on macOS.
When swift_compareTypeContextDescriptors was added, it did not auth the
TypeContextDesriptor arguments that were passed to it. Fix that here.
There are not any uses of this function yet, so there are no signs that
need to be added.
This gives us faster lookups and a small advantage in memory usage. Most of these maps need stable addresses for their entries, so we add a level of indirection to ConcurrentReadableHashMap for these cases to accommodate that. This costs some extra memory, but it's still a net win.
A new StableAddressConcurrentReadableHashMap type handles this indirection and adds a convenience getOrInsert to take advantage of it.
ConcurrentReadableHashMap is tweaked to avoid any global constructors or destructors when using it as a global variable.
ForeignWitnessTables does not need stable addresses and it now uses ConcurrentReadableHashMap directly.
rdar://problem/70056398
- Remove references to swiftImageInspectionShared on Linux and dont have
split libraries between static/non-static linked executables.
- -static-executable now links correctly Linux.
Note: swift::lookupSymbol() will not work on statically linked
executables but this can be worked around by using the
https://github.com/swift-server/swift-backtrace package.
Allow an 'async' function to overload a non-'async' one, e.g.,
func performOperation(_: String) throws -> String { ... }
func performOperation(_: String) async throws -> String { ... }
Extend the scoring system in the type checker to penalize cases where
code in an asynchronous context (e.g., an `async` function or closure)
references an asychronous declaration or vice-versa, so that
asynchronous code prefers the 'async' functions and synchronous code
prefers the non-'async' functions. This allows the above overloading
to be a legitimate approach to introducing asynchronous functionality
to existing (blocking) APIs and letting code migrate over.
* Dynamic Cast Rework: Runtime
This is a completely refactored version of the core swift_dynamicCast
runtime method.
This fixes a number of bugs, especially in the handling of multiply-wrapped
types such as Optional within Any. The result should be much closer to the
behavior specified by `docs/DynamicCasting.md`.
Most of the type-specific logic is simply copied over from the
earlier implementation, but the overall structure has been changed
to be uniformly recursive. In particular, this provides uniform
handling of Optional, existentials, Any and other common "box"
types along all paths. The consistent structure should also be
easier to update in the future with new general types.
Benchmarking does not show any noticable performance implications.
**Temporarily**, the old implementation is still available. Setting the
environment variable `SWIFT_OLD_DYNAMIC_CAST_RUNTIME` before launching a program
will use the old runtime implementation. This is only to facilitate testing;
once the new implementation is stable, I expect to completely remove the old
implementation.
to use it.
ConcurrentReadableHashMap is lock-free for readers, with writers using a lock to
ensure mutual exclusion amongst each other. The intent is to eventually replace
all uses ConcurrentMap with ConcurrentReadableHashMap.
ConcurrentReadableHashMap provides for relatively quick lookups by using a hash
table. Rearders perform an atomic increment/decrement in order to inform writers
that there are active readers. The design attempts to minimize wasted memory by
storing the actual elements out-of-line, and having the table store indices into
a separate array of elements.
The protocol conformance cache now uses ConcurrentReadableHashMap, which
provides faster lookups and less memory use than the previous ConcurrentMap
implementation. The previous implementation caches
ProtocolConformanceDescriptors and extracts the WitnessTable after the cache
lookup. The new implementation directly caches the WitnessTable, removing an
extra step (potentially a quite slow one) from the fast path.
The previous implementation used a generational scheme to detect when negative
cache entries became obsolete due to new dynamic libraries being loaded, and
update them in place. The new implementation just clears the entire cache when
libraries are loaded, greatly simplifying the code and saving the memory needed
to track the current generation in each negative cache entry. This means we need
to re-cache all requested conformances after loading a dynamic library, but
loading libraries at runtime is rare and slow anyway.
rdar://problem/67268325