This attribute allows to define a pre-specialized entry point of a
generic function in a library.
The following definition provides a pre-specialized entry point for
`genericFunc(_:)` for the parameter type `Int` that clients of the
library can call.
```
@_specialize(exported: true, where T == Int)
public func genericFunc<T>(_ t: T) { ... }
```
Pre-specializations of internal `@inlinable` functions are allowed.
```
@usableFromInline
internal struct GenericThing<T> {
@_specialize(exported: true, where T == Int)
@inlinable
internal func genericMethod(_ t: T) {
}
}
```
There is syntax to pre-specialize a method from a different module.
```
import ModuleDefiningGenericFunc
@_specialize(exported: true, target: genericFunc(_:), where T == Double)
func prespecialize_genericFunc(_ t: T) { fatalError("dont call") }
```
Specially marked extensions allow for pre-specialization of internal
methods accross module boundries (respecting `@inlinable` and
`@usableFromInline`).
```
import ModuleDefiningGenericThing
public struct Something {}
@_specializeExtension
extension GenericThing {
@_specialize(exported: true, target: genericMethod(_:), where T == Something)
func prespecialize_genericMethod(_ t: T) { fatalError("dont call") }
}
```
rdar://64993425
This part of a series of patches to bring ASTPrinter and Swift Demangler to
feature parity, which is needed by LLDB, which depends on using the strings
produced by either interchangibly.
rdar://problem/64222171
This is analogous to ASTPrinter's FullyQualifiedTypesIfAmbiguous option.
This part of a series of patches to bring ASTPrinter and Swift Demangler to
feature parity, which is needed by LLDB, which depends on using the strings
produced by either interchangibly.
rdar://problem/63700540
This part of a series of patches to bring ASTPrinter and Swift Demangler to
feature parity, which is needed by LLDB, which depends on using the strings
produced by either interchangibly.
rdar://problem/63700540
This part of a series of patches to bring ASTPrinter and Swift Demangler to
feature parity, which is needed by LLDB, which depends on using the strings
produced by either interchangibly.
<rdar://problem/63700540>
Rather than using the `LINK_LIBRARIES` option, use target_link_libraries
like clang does. Because these are all host tools, there is no name
mangling done for the libraries making this a no-op change.
This is basically the old mangling scheme. The option -remangle-objc-rt remangles a new mangled name to the old scheme.
This is useful to test the old remangler, which is used in the swift runtime to create the ObjC runtime names.
Demangle such suffixes as "unmangled suffix"
IRGen still uses '.<n>' to disambiguate partial apply thunks and outlined copy functions.
rdar://problem/32934962
As it’s not clear if we will need underscores, the demangler accepts $S and _$S.
Note that a double underscore is handled by the demangler client.
rdar://problem/32251811
Previously it was part of swiftBasic.
The demangler library does not depend on llvm (except some header-only utilities like StringRef). Putting it into its own library makes sure that no llvm stuff will be linked into clients which use the demangler library.
This change also contains other refactoring, like moving demangler code into different files. This makes it easier to remove the old demangler from the runtime library when we switch to the new symbol mangling.
Also in this commit: remove some unused API functions from the demangler Context.
fixes rdar://problem/30503344
This makes the demangler about 10 times faster.
It also changes the lifetimes of nodes. Previously nodes were reference-counted.
Now the returned demangle node-tree is owned by the Demangler class and it’s lifetime ends with the lifetime of the Demangler.
Therefore the old (and already deprecated) global functions demangleSymbolAsNode and demangleTypeAsNode are no longer available.
Another change is that the demangling for reflection now only supports the new mangling (which should be no problem because
we are generating only new mangled names for reflection).
It also uses the new mangling for type names in meta-data (except for top-level non-generic classes).
lldb has now support for new mangled metadata type names.
This reinstates commit 21ba292943.
Instead of a global demangleSymbolAsNode, which returns a reference-counted NodePointer, there is now a Context class which owns the nodes.
So now demangleSymbolAsNode is a member of Context and the returned NodePointer is alive as long as the Context is alive.
This is still a NFC: the new ABI still maps to the old functions.
The purpose of this change is to let lldb adapt to the new API and then we can switch to the new implementation.
For this we are linking the new re-mangler instead of the old one into the swift runtime library.
Also we are linking the new de-mangling into the swift runtime library.
It also switches to the new mangling for class names of generic swift classes in the metadata.
Note that for non-generic class we still have to use the old mangling, because the ObjC runtime in the OS depends on it (it de-mangles the class names).
But names of generic classes are not handled by the ObjC runtime anyway, so there should be no problem to change the mangling for those.
The reason for this change is that it avoids linking the old re-mangler into the runtime library.
The main action here is to sink the creation of the installation rule for all of
the swift host tools into this API. In a latter commit, I will use this API to
create include and build rules for add_swift_host_tool.
Now that I am going to be adding an IN_SWIFT_COMPONENT argument, I need to do
this to distinguish the concepts of an LLVM_COMPONENT and a SWIFT_COMPONENT.