The attached and freestanding macro attributes use the same parsing
logic and representation, so generalize the "attached" attribute into
a more general "macro role" attribute.
call it from parseExpandedAttributeList.
In the future, it would be much better to requestify computing exportedSourceFile,
so the new Swift parser is invoked on-demand rather than making sure it's
invoked in all of the appropriate parser entry points.
Describe attached macros with the `@attached` attribute, providing the
macro role and affected names as arguments to the macro. The form of
this macro will remain the same as it gains other kinds of attached
macro roles beyond "accessor".
Remove the "accessors" role from `@declaration`, which will be going
away.
Once an accessor macro has produced accessors, parse them and wire them
into the AST so the rest of the compiler will see them. First
end-to-end test case!
Add support for freestanding declaration macros.
- Parse `@declaration` attribute.
- Type check and expand `MacroExpansionDecl`.
Known issues:
- Generic macros are not yet handled.
- Expansion does not work when the parent decl context is `BraceStmt`. Need to parse freestanding declaration macro expansions in `BraceStmt` as `MacroExpansionDecl`, and add expanded decls to name lookup.
Align the grammar of macro declarations with SE-0382, so that macro
definitions are parsed as an expression. External macro definitions
are referenced via a referenced to the macro `#externalMacro`. Define
that macro in the standard library, and recognize uses of it as the
definition of other macros to use externally-defined macros. For
example, this means that the "stringify" macro used in a lot of
examples is now defined as something like this:
@expression macro stringify<T>(_ value: T) -> (T, String) =
#externalMacro(module: "MyMacros", type: "StringifyMacro")
We still parse the old "A.B" syntax for two reasons. First, it's
helpful to anyone who has existing code using the prior syntax, so they
get a warning + Fix-It to rewrite to the new syntax. Second, we use it
to define builtin macros like `externalMacro` itself, which looks like this:
@expression
public macro externalMacro<T>(module: String, type: String) -> T =
Builtin.ExternalMacro
This uses the same virtual `Builtin` module as other library builtins,
and we can expand it to handle other builtin macro implementations
(such as #line) over time.
Always parse macro expansions, regardless of language mode, and
eliminate the fallback path for very, very, very old object literals
like `#Color`. Instead, check for the feature flag for macro
declaration and at macro expansion time, since this is a semantic
restriction.
While here, refactor things so the vast majority of the macro-handling
logic still applies even if the Swift Swift parser is disabled. Only
attempts to expand the macro will fail. This allows us to enable the
macro-diagnostics test everywhere.
The "local context" was only used to prevent parsing of closures in a
non-local context, and also string interpolations because they are
similar-ish to closures. However, this isn't something a parser should
decide, so remove this special-case semantic check from the parser and
eliminate the notion of "local context" entirely.
The parser no longer sets local discriminators, and this function is
currently only responsible for adding local type declarations to the
source file. Rename it and remove most of the former callers so it
does just that.
Local discriminators for named entities are currently being set by the
parser, so entities not created by the parser (e.g., that come from
synthesized code) don't get local discriminators. Moreover, there is
no checking to ensure that every named local entity gets a local
discriminator, so some entities would incorrectly get a local
discriminator of 0.
Assign local discriminators as part of setting closure discriminators,
in response to a request asking for the local discriminator, so the
parser does not need to track this information, and all local
declarations---including synthesized ones---get local discriminators.
And add checking to make sure that every entity that needs a local
discriminator gets assigned one.
There are a few interesting cases in here:
* There was a potential mangling collision with local property
wrappers because their generated variables weren't getting local
discriminators
* $interpolation variables introduced for string interpolation weren't
getting local discriminators, they were just wrong.
* "Local rename" when dealing with captures like `[x]` was dependent on
the new delcaration of `x` *not* getting a local discriminator. There
are funny cases involving nesting where it would do the wrong thing.
Introduce the experimental feature `ParserDiagnostics`, which emits
diagnostics from the new Swift parser *first* for a source file. If
that produces any errors, we suppress any diagnostics emitted from the
C++ parser.
Replace the use of the "consistency check" vended by swift-syntax with
an ASTGen-implemented operation that emits diagnostics from the new parser
via the normal diagnostic engine. This eliminates our last dependency
on SwiftCompilerSupport, so stop linking it.
`getValue` -> `value`
`getValueOr` -> `value_or`
`hasValue` -> `has_value`
`map` -> `transform`
The old API will be deprecated in the rebranch.
To avoid merge conflicts, use the new API already in the main branch.
rdar://102362022
In the Swift grammar, the top-level of a source file is a mix of three
different kinds of "items": declarations, statements, and expressions.
However, the existing parser forces all of these into declarations at
parse time, wrapping statements and expressions in TopLevelCodeDecls,
so the primary API for getting the top-level entities in source files
is based on getting declarations.
Start generalizing the representation by storing ASTNode instances at
the top level, rather than declaration pointers, updating many (but
not all!) uses of this API. The walk over declarations is a (cached)
filter to pick out all of the declarations. Existing parsed files are
unaffected (the parser still creates top-level code declarations), but
the new "macro expansion" source file kind skips creating top-level
code declarations so we get the pure parse tree. Additionally, some
generalized clients (like ASTScope lookup) will now look at the list
of items, so they'll be able to walk into statements and expressions
without the intervening TopLevelCodeDecl.
Over time, I'd like to phase out `getTopLevelDecls()` entirely,
relying on the new `getTopLevelItems()` for parsed content. We can
introduce TopLevelCodeDecls more lazily for semantic walks.
Introduce a new source file kind to describe source files for macro
expansions, and include the macro expression that they expand. This
establishes a "parent" relationship
Also track every kind of auxiliary source file---whether for macro
expansions or other reasons---that is introduced into a module, adding
an operation that allows us to find the source file that contains a
given source location.
Allow user-defined macros to be loaded from dynamic libraries and evaluated.
- Introduce a _CompilerPluginSupport module installed into the toolchain. Its `_CompilerPlugin` protocol acts as a stable interface between the compiler and user-defined macros.
- Introduce a `-load-plugin-library <path>` attribute which allows users to specify dynamic libraries to be loaded into the compiler.
A macro library must declare a public top-level computed property `public var allMacros: [Any.Type]` and be compiled to a dynamic library. The compiler will call the getter of this property to obtain and register all macros.
Known issues:
- We current do not have a way to strip out unnecessary symbols from the plugin dylib, i.e. produce a plugin library that does not contain SwiftSyntax symbols that will collide with the compiler itself.
- `MacroExpansionExpr`'s type is hard-coded as `(Int, String)`. It should instead be specified by the macro via protocol requirements such as `signature` and `genericSignature`. We need more protocol requirements in `_CompilerPlugin` to handle this.
- `dlopen` is not secure and is only for prototyping use here.
Friend PR: apple/swift-syntax#1022