Based on Dave’s hack, this allows one to define a “default implementation” as, e.g.,
protocol P {
func foo()
}
extension P {
final func foo() { … }
}
Swift SVN r28949
This came out of today's language review meeting.
The intent is to match #available with the attribute
that describes availability.
This is a divergence from Objective-C.
Swift SVN r28484
Now that we don't have generic parameter lists at arbitrary positions
within the extended type of an extension declaration, simplify the
representation of the extended type down to a TypeLoc along with a
(compiler-synthesized) generic parameter list.
On the parsing side, just parse a type for the extended type, rather
than having a special grammar. We still reject anything that is not a
nominal type (of course), but it's simpler just to call it a type.
As a drive-by, fix the crasher when extending a type with module
qualification, rdar://problem/20900870.
Swift SVN r28469
Modules occupy a weird space in the AST now: they can be treated like
types (Swift.Int), which is captured by ModuleType. They can be
treated like values for disambiguation (Swift.print), which is
captured by ModuleExpr. And we jump through hoops in various places to
store "either a module or a decl".
Start cleaning this up by transforming Module into ModuleDecl, a
TypeDecl that's implicitly created to describe a module. Subsequent
changes will start folding away the special cases (ModuleExpr ->
DeclRefExpr, name lookup results stop having a separate Module case,
etc.).
Note that the Module -> ModuleDecl typedef is there to limit the
changes needed. Much of this patch is actually dealing with the fact
that Module used to have Ctx and Name public members that now need to
be accessed via getASTContext() and getName(), respectively.
Swift SVN r28284
When reading the generic parameters of a constrained protocol
extension, cross-refencing an associated type would perform name
lookup into the protocol extension itself, causing fatal recursion
during deserialization. Fixed by avoiding additional deserialization
when looking for an associated type. Fixes rdar://problem/20812303.
Swift SVN r28228
Rather than swizzle the superclass of these bridging classes at +load time, have the compiler set their ObjC runtime base classes, using a "@_swift_native_objc_runtime_base" attribute that tells the compiler to use a different implicit base class from SwiftObject. This lets the runtime shed its last lingering +loads, and should overall be more robust, since it doesn't rely on static initialization order or deprecated ObjC runtime calls.
Swift SVN r28219
preserve the original method name.
This heuristic is based on the Objective-C selector and therefore
doesn't really handle factory methods that would conflict with
initializers, but we can hope that those simply don't come up in
the wild.
It's not clear that this is the best thing to do --- it tends to
promote the non-throwing API over what's probably a newer, throwing
API --- but it's significantly easier, and it unblocks code without
creating deployment problems.
Swift SVN r28066
When deserializing a protocol, the conformance lookup table would not
contain entries for the inherited protocols of that protocol. They
were stashed in the "Protocols" array in TypeDecl (which will
eventually go away), but since there are no conformances for a
protocol, the conformance lookup table never got updated.
Nothing important seems to query this now; that will change soon.
Swift SVN r27967
Printing a module as Objective-C turns out to be a fantastic way to
verify the (de-)serialization of foreign error conventions, so
collapse the parsing-driving Objective-C printing test of throwing
methods into the general test for methods.
Swift SVN r27880
Printing a module as Objective-C turns out to be a fantastic way to
verify the (de-)serialization of foreign error conventions, so
collapse the parsing-driving Objective-C printing test of throwing
methods into the general test for methods.
Swift SVN r27870
Extensions cannot be uniquely cross-referenced, so cross-references to
extensions are serialized with the extended nominal type name and the
module in which the extension resides. This is not sufficient when
cross-referencing the generic type parameters of a constrained
protocol extension, because we don't know whether to get the
archetypes of the nominal type or some extension thereof. Serialize
the canonical generic signature so that we can pick an extension with
the same generic signature; it doesn't matter which we pick, so long
as we're consistent.
Fixes rdar://problem/20680169. Triggering this involves some
interesting interactions between the optimizer and standard library;
the standard library updates in the radar will test this.
Swift SVN r27825
the printed interface.
Previously we printed the typechecked and uniqued requirements and the result was non-sensical.
Long-term the requirements will be preserved in a better form but for now print the requirements
and serialize them.
rdar://19963093
Swift SVN r27680
Allow an unversioned 'deprecated' attribute to specify unconditional
deprecation of an API, e.g.,
@availability(*, deprecated, message="sorry")
func foo() { }
Also support platform-specific deprecation, e.g.,
@availability(iOS, deprecated, message="don't use this on iOS")
func bar() { }
Addresses rdar://problem/20562871.
Swift SVN r27355
Move the map that keeps track of conforming decl -> requirement from ASTContext
to a nominal type's ConformanceLookupTable, and populate it lazily.
This allows getSatisfiedProtocolRequirements() to work with declarations from module files.
Test on the SourceKit side.
Part of rdar://20526240.
Swift SVN r27353
Allow an unversioned 'deprecated' attribute to specify unconditional
deprecation of an API, e.g.,
@availability(*, deprecated, message="sorry")
func foo() { }
Also support platform-specific deprecation, e.g.,
@availability(iOS, deprecated, message="don't use this on iOS")
func bar() { }
Addresses rdar://problem/20562871.
Swift SVN r27339
This is an internal-only affordance for the numerics team to be able to work on SIMD-compatible types. For now, it can only increase alignment of fixed-layout structs and enums; dynamic layout, classes, and other obvious extensions are left to another day when we can design a proper layout control design.
Swift SVN r27323
Currently untestable (due to SILGen's inability to handle throwing
@objc methods), but testing will become trivial once that's in place.
Swift SVN r27294
Introduce basic validation for throwing @objc initializers, e.g., a
failable @objc initializer cannot also be throwing. However,
Objective-C selector computation is broken.
Swift SVN r27292
Currently untestable (due to SILGen's inability to handle throwing
@objc methods), but testing will become trivial once that's in place.
Swift SVN r27290
These aren't really orthogonal concerns--you'll never have a @thick @cc(objc_method), or an @objc_block @cc(witness_method)--and we have gross decision trees all over the codebase that try to hopscotch between the subset of combinations that make sense. Stop the madness by eliminating AbstractCC and folding its states into SILFunctionTypeRepresentation. This cleans up a ton of code across the compiler.
I couldn't quite eliminate AbstractCC's information from AST function types, since SIL type lowering transiently created AnyFunctionTypes with AbstractCCs set, even though these never occur at the source level. To accommodate type lowering, allow AnyFunctionType::ExtInfo to carry a SILFunctionTypeRepresentation, and arrange for the overlapping representations to share raw values.
In order to avoid disturbing test output, AST and SILFunctionTypes are still printed and parsed using the existing @thin/@thick/@objc_block and @cc() attributes, which is kind of gross, but lets me stage in the real source-breaking change separately.
Swift SVN r27095
"Autoclosure" is uninteresting to SIL. "noescape" isn't currently used by SIL and we shouldn't have it until it has a meaningful effect on SIL. "throws" should be adequately represented by a SIL function type having an error result.
Swift SVN r27023
The set of attributes that make sense at the AST level is increasingly divergent from those at the SIL level, so it doesn't really make sense for these to be the same. It'll also help prevent us from accidental unwanted propagation of attributes from the AST to SIL, which has caused bugs in the past. For staging purposes, start off with SILFunctionType's versions exactly the same as the FunctionType versions, which necessitates some ugly glue code but minimizes the potential disruption.
Swift SVN r27022
Another step toward using the conformance lookup table for
everything. This uncovered a tricky little bug in the conformance
lookup table's filtering logic (when asking for only those
conformances explicitly specified within a particular context) that
would end up dropping non-explicit conformances from the table (rather
than just the result).
Ween a few tests off of -enable-source-import, because they'll break
otherwise.
Swift SVN r27021
to represent them, and just dropped them on the ground. Now we parse them,
persist them in the AST, and "resolve" them from the expr grammar, but still
drop them on the ground. This is progress towards fixing: rdar://20135489
Swift SVN r26828
Have TypeChecker's constructor register itself as the lazy resolver,
and its destructor unregister itself. This introduces the
completely-sensible restriction that there can only be one type
checker active for an ASTContext at a time, which is the case already.
Use ASTContext's lazy resolver in a single place that's been causing
trouble (rdar://problem/20363958, rdar://problem/19773096), where
deserializing a protocol conformance can cause us to pass a null lazy
resolver into the protocol conformance table, which doesn't handle it
well. This commit fixes those issues, which I'm unable to reduce down
to a sane-enough test case to commit.
This commit implies a ton of cleanup work to eliminate LazyResolver
parameters from *everywhere*, deriving them from the ASTContext in the
few places they're needed as well. It's a good direction, but that
cleanup can be evolutionary.
Swift SVN r26824
- Enhance PBD with a whereExpr/elseStmt field to hold this.
- Start parsing the pattern of let/var decls as a potentially refutable pattern. It becomes
a semantic error to use a refutable pattern without an 'else' (diagnostics not in place yet).
- Change validatePatternBindingDecl to use 'defer' instead of a goto to ensure cleanups on exit.
- Have it resolve the pattern in a PBD, rewriting it from expressions into pattern nodes when valid.
- Teach resolvePattern to handle TypedPatterns now that they can appear (wrapping) refutable patterns.
- Teach resolvePattern to handle refutable patterns in PBD's without initializers by emitting a diagnostic
instead of by barfing, fixing regressions on validation tests my previous patch caused, and fixing
two existing validation test crashers.
Sema, silgen, and more tests coming later.
Swift SVN r26706
Start parsing a "trailing" where clause for extension declarations, which follows the extended type name and (optional) inheritance clause. Such a where clause is only currently permitted for protocol extensions right now.
When used on a protocol extension, it allows one to create a more-constrained protocol extension, e.g.,
extension CollectionType where Self.Generator.Element : Equatable { ... }
which appears to be working, at least in the obvious cases I've tried.
More cleanup, tests, and penance for the previous commit's "--crash" introductions still to come.
Swift SVN r26689
Rename 'assignment' attribute of infix operators to 'mutating'. Add
'has_assignment' attribute, which results in an implicit declaration of
the assignment version of the same operator. Parse "func =foo"
declaration and "foo.=bar" expression. Validate some basic properties of
in-place methods.
Not yet implemented: automatic generation of wrapper for =foo() if foo()
is implemented, or vice versa; likewise for operators.
Swift SVN r26508
Start allowing extensions to redeclare type parameters, which will get
different archetypes from the original nominal type. When an extension
does not redeclare type parameters, silently clone the nominal type's
generic type parameters so we still get distinct type parameters.
When deserializing an extension, wire up its generic parameter list so
we get the right archetypes for its members. This doesn't change the
module format (that happened earlier).
When determining the substitutions for an associated type that comes
from a different declaration context from the conformance that will
own the witness, be sure to map into the conformance's
DeclContext. Otherwise, we'll end up with tangled archetypes.
Fixes rdar://problem/16519588.
Swift SVN r26483
Primarily, unique normal protocol conformances and reference them via
a conformance ID. This eliminates the use of trailing records for
normal protocol conformances and (more importantly) the cases were we
would write incomplete conformances. The latter could cause problems
if we ever ended up deserializing an incomplete conformance without
also deserializing a complete record for that same conformance.
Secondarily, simplify the way we write conformances. They are now
always trailing records, and we separate out the derived conformance
kinds (specialized/inherited) from either a reference to a normal
conformance in the current module file (via a normal conformance ID)
or via a cross-reference to a conformance in another module file
(currently always a normal conformance, but this need not always be
the case). As part of this, make each conformance record
self-sustaining, so we don't have to push information down to the
reading routines (e.g., the conforming type) to actually produce a
proper conformance. This simplifies deserialization logic further.
Swift SVN r26482
Currently a no-op, but effective access for entities within the current
module will soon need to take testability into account. This declaration:
internal func foo() {}
has a formal access of 'internal', but an effective access of 'public' if
we're in a testable mode.
Part of rdar://problem/17732115 (testability)
Swift SVN r26472