So far, function effects only included escape effects.
This change adds side-effects (but they are not computed, yet).
It also involves refactoring of the existing escape effects.
Also the SIL effect syntax changed a bit. Details are in docs/SIL.rst
* [SILOptimizer] Add prespecialization for arbitray reference types
* Fix benchmark Package.swift
* Move SimpleArray to utils
* Fix multiple indirect result case
* Remove leftover code from previous attempt
* Fix test after rebase
* Move code to compute type replacements to SpecializedFunction
* Fix ownership when OSSA is enabled
* Fixes after rebase
* Changes after rebasing
* Add feature flag for layout pre-specialization
* Fix pre_specialize-macos.swift
* Add compiler flag to benchmark build
* Fix benchmark SwiftPM flags
Specifically, we get an additional table like thing called sil_moveonlydeinit. It looks as follows:
sil_moveonlydeinit TYPE {
@FUNC_NAME
}
It always has a single entry.
So far, argument effects were printed in square brackets before the function name, e.g.
```
sil [escapes !%0.**, !%1, %1.c*.v** => %0.v**] @foo : $@convention(thin) (@guaranteed T) -> @out S {
bb0(%0 : $*S, %1 : @guaranteed $T):
...
```
As we are adding more argument effects, this becomes unreadable.
To make it more readable, print the effects after the opening curly brace, and print a separate line for each argument. E.g.
```
sil [ossa] @foo : $@convention(thin) (@guaranteed T) -> @out S {
[%0: noescape **]
[%1: noescape, escape c*.v** => %0.v**]
bb0(%0 : $*S, %1 : @guaranteed $T):
...
```
This is a dedicated instruction for incrementing a
profiler counter, which lowers to the
`llvm.instrprof.increment` intrinsic. This
replaces the builtin instruction that was
previously used, and ensures that its arguments
are statically known. This ensures that SIL
optimization passes do not invalidate the
instruction, fixing some code coverage cases in
`-O`.
rdar://39146527
Include the parent `ModuleDecl` when serializing a `SILFunction` so that it is available on deserialized functions even though the full `DeclContext` is not present. With the parent module always available we can reliably compute whether the `SILFunction` comes from a module that was imported `@_weakLinked`.
Serialize the `DeclContext` member of `SILFunction` so that it can be used to look up the module that a function belongs to in order to compute weak import status.
Resolves rdar://98521248
We didn't serialize the ownership kind, which resulted in a miscompile causing an over-release.
The unchecked_ref_cast is the only instruction for which we change the ownership in the optimizer, so that it doesn't match the operand's ownership. Therefore this fix is sufficient for now - we don't need to serialize the ownership of other instructions.
But this is really a design flaw of the `OwnershipForwardingMixin`. It should not allow to set the ownership to arbitrary values.
rdar://92696202
The main point of this change is to make sure that a shared function always has a body: both, in the optimizer pipeline and in the swiftmodule file.
This is important because the compiler always needs to emit code for a shared function. Shared functions cannot be referenced from outside the module.
In several corner cases we missed to maintain this invariant which resulted in unresolved-symbol linker errors.
As side-effect of this change we can drop the shared_external SIL linkage and the IsSerializable flag, which simplifies the serialization and linkage concept.
We now schedule conformance emissions in basically the same way
we do for types and declarations, which means that we'll emit them
uniquely in the module file instead of redundantly at every use.
This should produce substantially smaller module files overall,
especially for modules that heavily use generics. It also means
that we can remove all the unfortunate code to support using
different abbrev codes for them in different bitcode blocks.
Requirement lists are now emitted inline in the records that need
them instead of as trailing records. I think this will improve
space usage, but mostly it assists in eliminating the problem
where abbrev codes are shared between blocks.
The main effect of this will be that in IRGen we will use llvm.dbg.addr instead
of llvm.dbg.declare. We must do this since llvm.dbg.declare implies that the
given address is valid throughout the program.
This just adds the instructions/printing/parsing/serialization/deserialization.
rdar://85020571
Store a list of argument effects in a function, which specify if and how arguments escape.
Such effects can be specified in the Swift source code (for details see docs/ReferenceGuides/UnderscoredAttributes.md) or derived in an optimization pass.
For details see the documentation in SwiftCompilerSources/Sources/SIL/Effects.swift.
This was a relict from the -sil-serialize-all days. This linkage doesn't make any sense because a private function cannot be referenced from another module (or file, in case of non-wmo compilation).
Support for addresses with arbitrary alignment as opposed to their
element type's natural in-memory alignment.
Required for bytestream encoding/decoding without resorting to memcpy.
SIL instruction flag, documentation, printing, parsing, serialization,
and IRGen.
Refactor SILGen's ApplyOptions into an OptionSet, add a
DoesNotAwait flag to go with DoesNotThrow, and sink it
all down into SILInstruction.h.
Then, replace the isNonThrowing() flag in ApplyInst and
BeginApplyInst with getApplyOptions(), and plumb it
through to TryApplyInst as well.
Set the flag when SILGen emits a sync call to a reasync
function.
When set, this disables the SIL verifier check against
calling async functions from sync functions.
Finally, this allows us to add end-to-end tests for
rdar://problem/71098795.
`differentiability_function_extract` instruction has an optional explicit
extractee type. This is currently used by TypeSubstCloner and the
LoadableByAddress transform to rewrite `differentiability_function_extract`
instructions while preserving `@differentiable` function type invariants.
There is an assertion that `differentiability_function_extract` instructions do
not have explicit extractee types outside of canonical/lowered SIL. However,
this does not handle the SIL deserialization case above: when a function
containing a `differentiable_function_extract` instruction with an explicit type
is deserialized into a raw SIL module (which happens when optimizations are
enabled).
Removing the assertion unblocks this encountered use case.
A more robust longer-term solution may be to change SIL `@differentiable`
function types to explicitly store component original/JVP/VJP function types.
Also fix `differentiable_function_extract` extractee type serialization.
Resolves SR-14004.
```
@_specialize(exported: true, spi: SPIGroupName, where T == Int)
public func myFunc() { }
```
The specialized entry point is only visible for modules that import
using `_spi(SPIGroupName) import ModuleDefiningMyFunc `.
rdar://64993425
This attribute allows to define a pre-specialized entry point of a
generic function in a library.
The following definition provides a pre-specialized entry point for
`genericFunc(_:)` for the parameter type `Int` that clients of the
library can call.
```
@_specialize(exported: true, where T == Int)
public func genericFunc<T>(_ t: T) { ... }
```
Pre-specializations of internal `@inlinable` functions are allowed.
```
@usableFromInline
internal struct GenericThing<T> {
@_specialize(exported: true, where T == Int)
@inlinable
internal func genericMethod(_ t: T) {
}
}
```
There is syntax to pre-specialize a method from a different module.
```
import ModuleDefiningGenericFunc
@_specialize(exported: true, target: genericFunc(_:), where T == Double)
func prespecialize_genericFunc(_ t: T) { fatalError("dont call") }
```
Specially marked extensions allow for pre-specialization of internal
methods accross module boundries (respecting `@inlinable` and
`@usableFromInline`).
```
import ModuleDefiningGenericThing
public struct Something {}
@_specializeExtension
extension GenericThing {
@_specialize(exported: true, target: genericMethod(_:), where T == Something)
func prespecialize_genericMethod(_ t: T) { fatalError("dont call") }
}
```
rdar://64993425
hasCReferences is used to determine that the function is externally
available. If a function has @_cdecl and not used from anywhere in Swift
side code, it will be emitted due to its hasCReferences. But if the
attribute is not restored from sib, it won't be emitted even if it's
used externally. So we need to serialize the attribute.
subclassScope was always set as NotApplicable when deserialized but we
need to serialize and deserialize it to keep correct linkage when using
SIB
```swift
open class Visitor {
public func visit() {
visitExprImpl()
}
@_optimize(none)
private func visitExprImpl() {
}
}
```
In this case, `visitExprImpl` is private but subclassScope is External.
So it should be lowered as an external function at LLVM IR level.
But once it's serialized into SIB, subclassScope of `visitExprImpl` was
deserialized as NotApplicable because it was not serialized. This
mismatch makes `visitExprImpl` lowered as an internal function at LLVM
IR level.
So `subclassScope` should be serialized.
Private and internal classes shouldn't have ABI constraints on their concrete vtable layout, so if methods
don't have overrides in practice, we can elide their vtable entries.
`DifferentiableFunctionInst` now stores result indices.
`SILAutoDiffIndices` now stores result indices instead of a source index.
`@differentiable` SIL function types may now have multiple differentiability
result indices and `@noDerivative` resutls.
`@differentiable` AST function types do not have `@noDerivative` results (yet),
so this functionality is not exposed to users.
Resolves TF-689 and TF-1256.
Infrastructural support for TF-983: supporting differentiation of `apply`
instructions with multiple active semantic results.
This will let us track class methods that must exist for pass ordering, interface, or ABI reasons, but which can
be given more efficient runtime representation because they have no overrides.
Add `linear_function` and `linear_function_extract` instructions.
`linear_function` creates a `@differentiable(linear)` function-typed value from
an original function operand and a transpose function operand (optional).
`linear_function_extract` extracts either the original or transpose function
value from a `@differentiable(linear)` function.
Resolves TF-1142 and TF-1143.
Add `differentiable_function` and `differentiable_function_extract`
instructions.
`differentiable_function` creates a `@differentiable` function-typed
value from an original function operand and derivative function operands
(optional).
`differentiable_function_extract` extracts either the original or
derivative function value from a `@differentiable` function.
The differentiation transform canonicalizes `differentiable_function`
instructions, filling in derivative function operands if missing.
Resolves TF-1139 and TF-1140.
SIL differentiability witnesses are a new top-level SIL construct mapping
an "original" SIL function and derivative configuration to derivative SIL
functions.
This patch adds `SILDifferentiabilityWitness` serialization/deserialization.
Resolves TF-1136.
SIL type lowering erases DynamicSelfType, so we generate
incorrect code when casting to DynamicSelfType. Fixing this
requires a fair amount of plumbing, but most of the
changes are mechanical.
Note that the textual SIL syntax for casts has changed
slightly; the target type is now a formal type without a '$',
not a SIL type.
Also, the unconditional_checked_cast_value and
checked_cast_value_br instructions now take the _source_
formal type as well, just like the *_addr forms they are
intended to replace.
The weak imported flag is now only set if the attribute is unconditionally
weak linked, which is the case when it or one of its parent contexts has a
@_weakLinked attribute.
To correctly handle weak linking based availability with serialized SIL
functions, we need to serialize the actual version tuple when the SIL function
was introduced. This is because the deployment target of the client app can
be older than the deployment target that the original module was built with.
Fixes <rdar://problem/52783668>.
A generic environment is always serialized as a GenericSignature with
a lazily-recreated environment, though sometimes it has to include
extra info specifically for generic environments used by SIL. The code
that was doing this claimed a bit for disambiguating between the two,
shrinking the permitted size of a compiled module from 2^31 bits to
2^30. (The code isn't just needlessly complicated; GenericEnvironments
used to be serialized with more information.)
Rather than have two representations for GenericEnvironmentID, this
commit just drops it altogether in favor of referencing
GenericSignatures directly. This causes a negligible file size
shrinkage for swiftmodules in addition to eliminating the problematic
disambiguation bit.
For now, the Deserialization logic will continue to cache
GenericEnvironments that are used directly by Deserialization, but
really that should probably be done at the AST level. Then we can
simplify further to ModuleFile tracking a plain list of
GenericSignatures.
Rather than storing the set of input requirements in a
(SIL)SpecializeAttr, store the specialized generic signature. This
prevents clients from having to rebuild the same specialized generic
signature on every use.
This flag is set by DefinitInitialization if the lifetime of the stored value is controlled dynamically.
If the flag is set, it's not (easily) possibly to statically calculate the lifetime of the stored value.
This indicates that the "self" argument to the current function is always dynamically of the exact
static base class type, allowing metadata accesses in IRGen to use the local self metadata to answer
metadata requests for the class type. Set this attribute on allocating entry points of designated
inits, which is one of the most common places where we emit redundant metadata accesses.
Using an anonymous union in KeyPathPatternComponent instead of the weird void * in SetterAndIdKind
Added TupleElement kind to KeyPathComponentKindEncoding
Written basic SIL keypath serialization tests
Deleted or edited some old Swift-level tuple key path tests
It does not take ownership of its non-trivial arguments, is a trivial
function type and therefore must not be destroyed. The compiler must
make sure to extend the lifetime of non-trivial arguments beyond the
last use of the closure.
%objc = copy_value %0 : $AnObject
%closure = partial_apply [stack] [callee_guaranteed] %16(%obj) : $@convention(thin) (@guaranteed AnObject) -> ()
%closure2 = mark_dependence %closure : $@noescape @callee_guaranteed () -> () on %obj : $AnObject
%user = function_ref @useClosure : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
apply %user(%closure2) : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
dealloc_stack %closure : $() ->()
destroy_value %obj : $AnObject // noescape closure does not take ownership
SR-904
rdar://35590578