Mandatory pass will clean it up and replace it by a copy_block and
is_escaping/cond_fail/release combination on the %closure in follow-up
patches.
The instruction marks the dependence of a block on a closure that is
used as an 'withoutActuallyEscaping' sentinel.
rdar://39682865
To mark when a user of it is known to escape the value. This happens
with materializeForSet arguments which are captured and used in the
write-back. This means we need to keep the context alive until after
the write-back.
Follow-up patches to fully replace the PostponedCleanup hack in SILGen
by a mandatory SIL transformation pass to guarantee the proper lifetime
will use this flag to be more conservative when extending the lifetime.
The problem:
%pa = partial_apply %f(%some_context)
%cvt = convert_escape_to_noescape [not_guaranteed] [escaped] %pa
%ptr = %materialize_for_set(..., %cvt)
... write_back
... // <-- %pa needs to be alive until after write_back
Code may end up indirectly using a witness table for a Clang-imported type by inlining code that used the conformance from another module, in which case we need to ensure we have a local definition at hand in the inlining module so we can have something to link against independently. This needs to be fixed from both sides:
- During serialization, serialize not only witness tables from the current module, but from Clang-imported modules too
- During deserialization, when the SILLinker walks a loaded module, ensure that all shared conformances get deserialized, including those from ApplyInsts and inherited/associated type protocol requirements.
Fixes rdar://problem/38687726.
Code may end up indirectly using a witness table for a Clang-imported type by inlining code that used the conformance from another module, in which case we need to ensure we have a local definition at hand in the inlining module so we can have something to link against independently. This needs to be fixed from both sides:
- During serialization, serialize not only witness tables from the current module, but from Clang-imported modules too, so that their definitions can be used by other modules that inline code from the current module
- During IRGen, when we emit a reference to a SILWitnessTable or SILFunction declaration with shared linkage, attempt to deserialize the definition on demand
Fixes rdar://problem/38687726.
Add serialization layouts for rare instructions that take extra attributes. We
can continue adding bits to these layout without affecting the layout of the
vast majority of instructions.
A public subscript might have generic indexes that aren't unconditionally Hashable, or might use indexes that are retroactively made Hashable, so the property descriptor on the implementer's side can't always resiliently provide this information to the final instantiated KeyPath.
Will be used to verify that withoutActuallyEscaping's block does not
escape the closure.
``%escaping = is_escaping_closure %closure`` tests the reference count. If the
closure is not uniquely referenced it prints out and error message and
returns true. Otherwise, it returns false. The returned result can be
used with a ``cond_fail %escaping`` instruction to abort the program.
rdar://35525730
The obsolete llvm::HashString() was equivalent to
llvm::djbHash(seed=0) and was removed from llvm. This patch replaces
all occurences of llvm::HashString() with llvm::djbHash(seed=0), no
functional change.
The default seed of llvm::djbHash() is supposed to yield a higher
quality result that using seed=0, but changing it looks like it
affects the ordering of SIL serialization.
This is mostly intended to be used for testing at this point; in the
long run, we want to be using availability information to decide
whether to weak-link something or not. You'll notice a bunch of FIXMEs
in the test case that we may not need now, but will probably need to
handle in the future.
Groundwork for doing backward-deployment execution tests.
This will allow key paths to resiliently reference public properties from other binaries by referencing a descriptor vended by the originating binary. NFC yet, this just provides printing/parsing/verification of the new component.
@noescape function types will eventually be trivial. A
convert_escape_to_noescape instruction does not take ownership of its
operand. It is a projection to the trivial value carried by the closure
-- both context and implementation function viewed as a trivial value.
A safe SIL program must ensure that the object that the project value is based
on is live beyond the last use of the trivial value. This will be
achieve by means of making the lifetimes dependent.
For example:
%e = partial_apply [callee_guaranteed] %f(%z) : $@convention(thin) (Builtin.Int64) -> ()
%n = convert_escape_to_noescape %e : $@callee_guaranteed () -> () to $@noescape @callee_guaranteed () -> ()
%n2 = mark_dependence %n : $@noescape @callee_guaranteed () -> () on %e : $@callee_guaranteed () -> ()
%f2 = function_ref @use : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
apply %f2(%n2) : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
release_value %e : $@callee_guaranteed () -> ()
Note: This is not yet actually used.
Part of:
SR-5441
rdar://36116691