Titled as "// swift-module-flags-ignorable:", this new field contains new
frontend arguments that can be safely ignored by the older version of the compiler.
For compilers that don't know the field at all, all arguments in it are ignored.
rdar://78233352
This allows library authors to pass down a project version number so that library users can conditionally
import that library based on the available version in the search paths.
Needed for rdar://73992299
Introduce flags `-enable-actor-data-race-checks` and
`-disable-actor-data-race-checks` to enable/disable emission of code
that checks that we are on the correct actor. Default to `false` for
now but make it easy to enable in the future.
Introduce a new compiler flag `-module-abi-name <name>` that uses the
given name as the ABI name for the module (rather than the module's
name in source code). The ABI name impacts name mangling and metadata.
To help support incremental adoption of the concurrency model, a number
of concurrency-related diagnostics are enabled only in "new" code that
takes advantage of concurrency features---async, @concurrent functions,
actors, etc. This warning flag opts into additional warnings that better
approximate the eventual concurrency model, and which will become
errors a future Swift version, allowing one to both experiment with
the full concurrency model and also properly prepare for it.
In the legacy driver, these flags will merely be propagated to the
frontends to indicate that they should disable serialization of
incremental information in swift module files.
In the new driver, these flags control whether the Swift driver performs
an incremental build that is aware of metadata embedded in the module.
Kudos to David for coming up with our new marketing name: Incremental
Imports.
rdar://74363450
These new options mirror -o and -output-filelist and are used instead
of those options to supply the output file path(s) to record in the
index store. This is intended to allow sharing index data across
builds in separate directories that are otherwise equivalent as far
as the index data is concered (e.g. an ASAN build and a non-ASAN build)
by supplying the same -index-unit-output-path for both.
Resolves rdar://problem/74816412
Add a new swift-frontend driver option that extract APIs in the swift
module and print in JSON format. This is to allow tooling to understand
and process swift APIs without the need to be a swift compiler or
understand swift module/AST.
Currently the `-assert-config` flag is not serialized into the module interface. This can cause a subtle issue when rebuilding a Swift module from the corresponding .swiftinterface when the module cache has gone stale.
This change adds `-assert-config` as a module interface option so that
it will be serialized into the header of the .swiftinterface file of the
module.
rdar://72452477
Previously Swift enabled the "UseOdrIndicator" ASan instrumentation mode
and gave no option to disable this. This probably wasn't intentional but
happened due to the fact the
`createModuleAddressSanitizerLegacyPassPass()` function has a default
value for the `UseOdrIndicator` parameter of `true` and in Swift we
never specified this parameter explicitly.
Clang disables the "UseOdrIndicator" mode by default but allows it to be
enabled using the `-fsanitize-address-use-odr-indicator` flag.
Having "UseOdrIndicator" off by default is probably the right
default choice because it bloats the binary. So this patch changes the
Swift compiler to match Clang's behavior.
This patch disables the "UseOdrIndicator" mode by default but adds a
hidden driver and frontend flag (`-sanitize-address-use-odr-indicator`)
to enable it. The flag is hidden so that we can remove it in the future
if needed.
A side effect of disabling "UseOdrIndicator" is that by we will no
longer use private aliases for poisoning globals. Private aliases were
introduced to avoid crashes
(https://github.com/google/sanitizers/issues/398) due to ODR violations
with non-instrumented binaries. On Apple platforms the use of two-level
namespaces probably means that using private aliases wasn't ever really
necessary to avoid crashes. On platforms with a flat linking namespace
(e.g. Linux) using private aliases might matter more but should users
actually run into problems they can either:
* Fix their environment to remove the ODR, thus avoiding the crash.
* Instrument the previously non-instrumented code to avoid the crash.
* Use the new `-sanitize-address-use-odr-indicator` flag
rdar://problem/69335186
Passing the frontend flag -Rmodule-loading makes the compiler emit
remarks with the path of every module loaded. The path for Swift modules
is either the swiftinterface file for modules built with library
evolution or the binary swiftmodule otherwise. The path for clangmodules
is always in the cache which could be improved as it may be less useful.
Here's an extract of the output for a simple SwiftUI app:
<unknown>:0: remark: loaded module from
/Users/xymus/Library/Developer/Xcode/DerivedData/ModuleCache.noindex/2VJP7CNCGWRF0/SwiftShims-18ZF6992O9H75.pcm
<unknown>:0: remark: loaded module from
/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator14.2.sdk/usr/lib/swift/Swift.swiftmodule/x86_64-apple-ios-simulator.swiftinterface
<unknown>:0: remark: loaded module from
/Users/xymus/Library/Developer/Xcode/DerivedData/ModuleCache.noindex/2VJP7CNCGWRF0/os-1HVC6DNXVU37C.pcm
<unknown>:0: remark: loaded module from
/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator14.2.sdk/usr/lib/swift/os.swiftmodule/x86_64-apple-ios-simulator.swiftinterface
<unknown>:0: remark: loaded module from
/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator14.2.sdk/System/Library/Frameworks/SwiftUI.framework/Modules/SwiftUI.swiftmodule/x86_64-apple-ios-simulator.swiftinterface
This frontend flag can be used as an alternative to
-experimental-skip-non-inlinable-function-bodies that doesn’t skip
functions defining nested types. We want to keep these types as they are
used by LLDB. Other functions ares safe to skip parsing and
type-checking.
rdar://71130519
Adds a new flag "-experimental-skip-all-function-bodies" that skips
typechecking and SIL generation for all function bodies (where
possible).
`didSet` functions are still typechecked and have SIL generated as their
body is checked for the `oldValue` parameter, but are not serialized.
Parsing will generally be skipped as well, but this isn't necessarily
the case since other flags (eg. "-verify-syntax-tree") may force delayed
parsing off.
Introduce availability macros defined by a frontend flag.
This feature makes it possible to set the availability
versions at the moment of compilation instead of having
it hard coded in the sources. It can be used by projects
with a need to change the availability depending on the
compilation context while using the same sources.
The availability macro is defined with the `-define-availability` flag:
swift MyLib.swift -define-availability "_iOS8Aligned:macOS 10.10, iOS 8.0" ..
The macro can be used in code instead of a platform name and version:
@available(_iOS8Aligned, *)
public func foo() {}
rdar://problem/65612624
Cross-Module incremental dependencies are a new experimental mode of the Swift driver and frontend. Through a tight partnership between the two, we enable the driver to have far greater visibility into the dependency structure of a Swift module.
Rather than invent a new model, we have chosen to extend the existing incremental compilation model that works for a single module to multiple modules. To do this, we need the frontend to emit Swift dependencies in a form the driver can consume. We could emit these metadata in the form of an extra supplementary output that summarizes the contents of a generated module. However, this approach comes with a number of downsides:
- It requires additional integration with the build system
- It assumes swiftmodule files will be consumed directly from the build directory; they are not
- It incorrectly assumes a swiftmodule has but one interface. Taken in aggregate, a swiftmodule directory has one interface *per triple*
Given this, the approach we take here is to encode these dependencies directly into the swiftmodule file itself. When frontends load these souped-up incremental swiftmodule files, they record in their own swiftdeps files that they depend on an incremental swiftmodule. Upon the next build, the driver is then able to read that module file, extract the swiftdeps information from it, and use it to influence the way it schedules jobs.
The sum total is that we neatly extend the intra-module case of incremental builds to the inter-module case by treating swiftmodule inputs not as opaque entities, but as "big ol' flat Swift files" that just export an interface like any other Swift file within the module. As a further optimization, and because clients literally cannot observe this aspect of the incremental build, we only serialize the provides (the "defs" side of a "use-def" edge) when emitting swiftdeps metadata into swiftmodule files.
rdar://69595010