This changes how ReflectionContext reads machO reflection sections by reading them individually instead of as one big memory block spanning from the first to the last section (and including whatever else is in between). This change will enable an optimization on LLDB's side where, if we're reading read-only data, we read from the file-cache instead of the child process, which should speed up debugging when working with remote processes.
* Move differentiability kinds from target function type metadata to trailing objects so that we don't exhaust all remaining bits of function type metadata.
* Differentiability kind is now stored in a tail-allocated word when function type flags say it's differentiable, located immediately after the normal function type metadata's contents (with proper alignment in between).
* Add new runtime function `swift_getFunctionTypeMetadataDifferentiable` which handles differentiable function types.
* Fix mangling of different differentiability kinds in function types. Mangle it like `ConcurrentFunctionType` so that we can drop special cases for escaping functions.
```
function-signature ::= params-type params-type async? sendable? throws? differentiable? // results and parameters
...
differentiable ::= 'jf' // @differentiable(_forward) on function type
differentiable ::= 'jr' // @differentiable(reverse) on function type
differentiable ::= 'jd' // @differentiable on function type
differentiable ::= 'jl' // @differentiable(_linear) on function type
```
Resolves rdar://75240064.
* Release node factory storage after each demangling operation
This adds missing clear() operations to a number of places in
RemoteMirror in order to reclaim memory after (de)mangling results
are no longer needed.
Before this, the RemoteMirror library had an unfortunate tendency to use
excessive amounts of memory as the demangler kept appending data to its
internal slab allocator.
Resolves rdar://72958641
* Include payload cases even if we cannot retrieve the typeinfo
Otherwise, we end up with inconsistent counts of payload and non-payload
cases, which screws up some of the enum management.
* Add a very basic check of enum with CF payload.
We found crashes deep in TypeRefBuilder that could traced back to a likely
nullptr RemoteRef<> section address. It is very plausible that this is
connected to a failed MemoryReader::getBytes() call, which can fail but
isn't checked.
This patch adds missing error checks to every call to readBytes().
rdar://74445486
(cherry picked from commit 714cefbba4)
Add @concurrent to SIL function types, mirroring what's available on
AST function types. @concurrent function types will have by-value
capture semantics.
Since these types have an implicit stored property, this requires
adding an abstraction over fields to IRGen, at least throughout
the class code. In some ways I think this significantly improves
the code, especially in how we approach missing members.
Fixes rdar://72202671.
While the existing _forEachField in ReflectionMirror.swift
already gives the offsets and types for each field, this isn't
enough information to construct a keypath for that field in
order to modify it.
For reference, this should be sufficent to implement the features
described here: (https://forums.swift.org/t/storedpropertyiterable/19218/62)
purely at runtime without any derived conformances for many types.
Note: Since there isn't enough reflection information for
`.mutatingGetSet` fields, this means that we're not able to support
reflecting certain types of fields (functions, nonfinal class fields,
etc). Whether this is an error or not is controlled by the `.ignoreUnknown`
option.
swift::reflection::TypeInfo for (Clang-)imported non-Objective-C types. This is
needed to reflect on the size mixed Swift / Clang types, when no type metadata
is available for the C types.
This is a necessary ingredient for the TypeRef-based Swift context in
LLDB. Because we do not have reflection metadata for pure C types in Swift,
reflection cannot compute TypeInfo for NominalTypeRefs for those types. By
providing this callback, LLDB can supply this information for DWARF, and
reflection can compute TypeInfos for mixed Swift/C types.
to use it.
ConcurrentReadableHashMap is lock-free for readers, with writers using a lock to
ensure mutual exclusion amongst each other. The intent is to eventually replace
all uses ConcurrentMap with ConcurrentReadableHashMap.
ConcurrentReadableHashMap provides for relatively quick lookups by using a hash
table. Rearders perform an atomic increment/decrement in order to inform writers
that there are active readers. The design attempts to minimize wasted memory by
storing the actual elements out-of-line, and having the table store indices into
a separate array of elements.
The protocol conformance cache now uses ConcurrentReadableHashMap, which
provides faster lookups and less memory use than the previous ConcurrentMap
implementation. The previous implementation caches
ProtocolConformanceDescriptors and extracts the WitnessTable after the cache
lookup. The new implementation directly caches the WitnessTable, removing an
extra step (potentially a quite slow one) from the fast path.
The previous implementation used a generational scheme to detect when negative
cache entries became obsolete due to new dynamic libraries being loaded, and
update them in place. The new implementation just clears the entire cache when
libraries are loaded, greatly simplifying the code and saving the memory needed
to track the current generation in each negative cache entry. This means we need
to re-cache all requested conformances after loading a dynamic library, but
loading libraries at runtime is rare and slow anyway.
rdar://problem/67268325
LLVM, as of 77e0e9e17daf0865620abcd41f692ab0642367c4, now builds with
-Wsuggest-override. Let's clean up the swift sources rather than disable
the warning locally.
This removes the last reference to the `llvm::` namespace in the
standard library. All uses of the LLVMSupport library now are
namespaced into the `__swift::__runtime` namespace. This allows us to
incrementally vend the LLVMSupport library and make the separation
explicit.
There are a set of headers shared between the Swift compiler and the
runtime. Ensure that we explicitly use `llvm::ArrayRef` rather than
`ArrayRef` which is aliased to `::llvm::ArrayRef`. Doing so enables us
to replace the `ArrayRef` with an inline namespaced version fixing ODR
violations when the swift runtime is loaded into an address space with
LLVM.