* Fix unnecessary one-time recompile of stdlib with -enable-ossa-flag
This includes a bit in the module format to represent if the module was
compiled with -enable-ossa-modules flag. When compiling a client module
with -enable-ossa-modules flag, all dependent modules are checked for this bit,
if not on, recompilation is triggered with -enable-ossa-modules.
* Updated tests
Fixe a couple of bugs in libSyntax parsing found by enabling `-verify-syntax-tree` for `%target-build-swift`:
- Fix parsing of the `actor` contextual keyword in actor decls
- Don't build a libSyntax tree when parsing the availability macro
- The availability macro is not part of the source code and doesn't form a valid Swift file, thus creation of a libSyntax tree is completely pointless and will fail
- Add support for parsing `@_originallyDefinedIn` attributes.
- Add support for parsing `#sourceLocation` in member decl lists
- Add support for effectful properties (throwing/async getters/setters)
- Add support for optional types as the base of a key path (e.g. `\TestOptional2?.something`)
- Allow platform restrictions without a version (e.g. `_iOS13Aligned`)
In particular, we were unconditionally dropping argument labels on accessors; now we only do that for property accessors, not subscript accessors.
Doing this unconditionally causes ClangImporter failures when a method parameter is called “subscript” (really!), so this behavior is enabled only by the caller’s request.
For backtracking scopes that are never cancelled, we can completely disable the SyntaxParsingContext, avoiding the creation of deferred nodes which will never get recorded.
Small peformance improvement: Token is larger than a pointer and not
modified in the performance-criticial TokenReceivers, so we can pass
it by reference.
Instead, only reference count the SyntaxArena that the RawSyntax nodes
live in. The user of RawSyntax nodes must guarantee that the SyntaxArena
stays alive as long as the RawSyntax nodes are being accessed.
During parse time, the SyntaxTreeCreator holds on to the SyntaxArena
in which it creates RawSyntax nodes. When inspecting a syntax tree,
the root SyntaxData node keeps the SyntaxArena alive. The change should
be mostly invisible to the users of the public libSyntax API.
This change significantly decreases the overall reference-counting
overhead. Since we were not able to free individual RawSyntax nodes
anyway, performing the reference-counting on the level of the
SyntaxArena feels natural.
Do the same thing that we are already doing for trivia: Since RawSyntax
nodes always live inside a SyntaxArena, we don't need to tail-allocate
an OwnedString to store the token's text. Instead we can just copy it
to the SyntaxArena. If we copy the entire source buffer to the syntax
arena at the start of parsing, this means that no more copies are
required later on. Plus we also avoid ref-counting the OwnedString which
should also increase performance.
This is again a transitional state before SyntaxParsingContext hands
the responsibility over to SyntaxTreeCreator and from there to
SyntaxParseActions.
This is an intermediate state in which the lexer delegates the
responsibility for trivia lexing to the parser. Later, the parser will
delegate this responsibility to SyntaxParsingContext which will hand it
over to SyntaxParseAction, which will only lex the pieces if it is
really necessary to do so.
Code completion used to avoid forming single expression closures/function
bodies when the single expression contained the code completion expression
because a contextual type mismatch could result in types not being applied
to the AST, giving no completions.
Completions that have been migrated to the new solver-based completion
mechanism don't need this behavior, however. Rather than trying to guess
whether the type of completion we're going to end up performing is one of
the ones that haven't been migrated to the solver yet when parsing, instead
just always form single-expression closures/function bodies (like we do for
regular compilation) and undo the transformation if and when we know we're
going to perform a completion kind we haven't migrated yet.
Once all completion kinds are migrated, the undo-ing code can be removed.
For example, the completion below would trigger error recovery within the
closure, which we recover from by skipping to the first inner closure's right
brace. The fact that we recovered though, was not recorded. The closure is
treated as still being an error, triggering another recovery after it that
skips over the 'Thing' token, giving a lone closure expression, rather than a
call.
CreateThings {
Thing { point in
print("hello")
point.#^HERE^#
}
Thing { _ in }
}
This isn't an issue for code completion when the outer closure is a regular
closure, but when it's a function builder, invalid elements result in no types
being applied (no valid solutions) and we end up with no completion results.
The fix here is removing the error status from the parser result after the
initial parser recovery.
We need ClangImporterOptions to be persistent for several scenarios: (1)
when creating a sub-ASTContext to build Swift modules from interfaces; and
(2) when creating a new Clang instance to invoke Clang dependencies scanner.
This change is NFC.
Currently when parsing a SourceFile, the parser
gets handed pointers so that it can write the
interface hash and collected tokens directly into
the file. It can also call `setSyntaxRoot` at
the end of parsing to set the syntax tree.
In preparation for the removal of
`performParseOnly`, this commit formalizes these
values as outputs of `ParseSourceFileRequest`,
ensuring that the file gets parsed when the
interface hash, collected tokens, or syntax tree
is queried.
Sink the `BuildSyntaxTree` and
`CollectParsedTokens` bits into
`SourceFile::ParsingFlags`, with a static method
to get the parsing options from the lang opts.
Also add a parsing flag for enabling the interface
hash, which can be used instead of calling
`enableInterfaceHash`.
Previously it was backtracking for the duration of the whole property body which was preventing re-use of previously parsed nodes for incremental re-parsing.
Add ModuleImplicitImportsRequest, which computes
the modules that should be implicitly imported by
each file of a given module. Use this request in
import resolution to add all the necessary
implicit imports.
The request computes the implicit imports by
consulting the ImplicitImportInfo, which ModuleDecl
can now be created with. This allows us to remove
uses of `SourceFile::addImports` in favor of
adding modules needed to be implicitly imported to
the ImplicitImportInfo.
Code Completion operates on a CompilerInstance that passes a primary
file down for type checking. This means it creates and registers
dependencies in the referenced name trackers. Despite the fact that
those dependencty edges are unused,
because the would-be swiftdeps file is never written to disk,
it is still a dependency source that should participate in the
request-based dependency tracking refactor.
We were always dropping the error status when returning from parseExprImpl. We
were also incorrectly keeping error status after recovering by finding the
right close token in parseList. This change fixes both, and also updates a few
callers of parseList that assumed when they reported a failure parsing an
element the list as a whole would get error status, which isn't true due to
recovery.
Remove the `EvaluateConditionals` flags from the
parser, and instead query the source file.
This commit also changes ParserUnit such that it
doesn't evaluate #if conditions by default, as
none of its clients appear to require it. The
only client that wasn't explicitly disabling #if
evaluation and is processing the resulting AST is
swift-indent, so this commit also adds a test to
ensure it continues to work correctly with #if
decls.
Add flags for whether delayed body parsing or #if
condition evaluation is disabled, as well as
whether warnings should be suppressed. Then pass
down these flags from the frontend.
This is in preparation for the requestification of
source file parsing where the SourceFile will need
to be able to parse itself on demand.
Move the global PersistentParserState from
the CompilerInstance to the source file that code
completion is operating on, only hooking up the
state when it's needed. This will help make it
easier to requestify source file parsing.