Alter the value metadata layout to use an absolute pointer for the
nominal type descriptor rather than a relative offset relative to the
complete type metadata. Although this is slightly less efficient in
terms of load times, this is more portable across different
environments. For example, PE/COFF does not provide a cross-section
relative offset relocation. Other platform ports are unable to provide
a 64-bit relative offset encoding.
Given that the value witness table reference in the value metadata is
currently an absolute pointer, this page is most likely going to be
dirtied by the loader.
StructMetadata is now two words that the parent pointer is gone.
We need to add our own storage for the generic arguments, instead
of smashing the location where the parent pointer used to be.
My previous fix was incorrect because it would set the template
size to two words (thus we no longer read past the end of the
template) but in turn we would write past the end of the
instantiated metadata.
We no longer need this for anything, so remove it from metadata
altogether. This simplifies logic for emitting type metadata and
makes type metadata smaller.
We still pass the parent metadata pointer to type constructors;
removing that is a separate change.
On architectures where the calling convention uses the same argument register as
return register this allows the argument register to be live through the calls.
We use LLVM's 'returned' attribute on the parameter to facilitate this.
We used to perform this optimization via an optimization pass. This was ripped
out some time ago around commit 955e4ed652.
By using LLVM's 'returned' attribute on swift_*retain, we get the same
optimization from the LLVM backend.
The previous code actually had a "semantic" error as well as a parse
error, so depending on the timing we could get 2 diagnosticsl
rdar://problem/34373697
I found this by inspection (also, I found that newer
clang versions also warns for this under -Wall). While here,
convert to static_cast<> for a more idiomatic C++.
This patch allows Parser to generate a refined token stream to satisfy tooling's need. For syntax coloring, token stream from lexer is insufficient because (1) we have contextual keywords like get and set; (2) we may allow keywords to be used as argument labels and names; and (3) we need to split tokens like "==<". In this patch, these refinements are directly fulfilled through parsing without additional heuristics. The refined token vector is optionally saved in SourceFile instance.
* Unify the capitalization across all user-visible error messages (fatal errors, assertion failures, precondition failures) produced by the runtime, standard library and the compiler.
* Update some more tests to the new expectations.
"Accessibility" has a different meaning for app developers, so we've
already deliberately excised it from our diagnostics in favor of terms
like "access control" and "access level". Do the same in the compiler
now that we aren't constantly pulling things into the release branch.
This commit changes the 'Accessibility' enum to be named 'AccessLevel'.
- Always include an array of requirement descriptors in the protocol
descriptor. For now, this doesn't contain anything except a general
requirement kind and an optional default implementation, but eventually
this can be augmented with type / name metadata. This array is always
emitted as constant.
- Guarantee the value of the extent fields in a protocol descriptor and
slightly tweak their meaning.
- Move the private-data field out of line in a generic witness table
descriptor so that the main descriptor can be emitted as constant.
- Rely on IRGen's notion of the witness-table layout instead of assuming
that SILWitnessTable and SILDefaultWitnessTable match the actual
physical layout.
This version of the patch uses a hack in which we assign internal rather
than private linkage to certain symbols in order to work around a Darwin
linker bug.
On 32bit platforms there are 7 bits reserved for the unowned retain count. This
makes overflow a likely scenario. Implement overflow into the side table.
rdar://33495003
* Generate libSyntax API
This patch removes the hand-rolled libSyntax API and replaces it with an
API that's entirely automatically generated. This means the API is
guaranteed to be internally stylistically and functionally consistent.
Linux (rather, gold) is stricter than macOS (ld64) about this, so
until we can eliminate the rest of the dependencies this is the
best workaround we have.
...finally breaking the dependency of Parse on Sema.
There are still some unfortunate dependencies here -- Xi's working on
getting /AST/ not dependent on Sema -- but this is a step forward.
It is a little strange that parseIntoSourceFile is in ParseSIL, and
therefore that that's still a dependency for anyone trying to, well,
parse. However, nearly all clients that parse want to type-check as
well, and that requires Sema, Serialization, and the ClangImporter...
and Serialization and SIL currently require each other as well
(another circular dependency). So it's not actively causing us trouble
right now.
In today's Swift, only non-optional function parameters can be
non-escaping (and are by default). An optional function parameter uses
a function type as a generic argument to Optional, and like any other
generics that's considered an opaque and therefore possibly escaping
use of the type. This is certainly unfortunate since it means a
function parameter cannot be both Optional and non-escaping.
However, this "unfortunate" becomes a concrete problem when dealing
with Objective-C, which /does/ allow applying its 'noescape' attribute
to a callback block marked 'nullable'. This is fine for /uses/ of
methods with such parameters, but prevents anyone from /overriding/
these methods.
This patch pokes a very narrow hole into the override checking to
accomodate this: if a declaration comes from Objective-C, and it has
an optional, non-escaping closure parameter, it's okay to override it
in Swift with an optional, escaping closure parameter. This isn't
strictly safe because a caller could be relying on the
non-escaping-ness, but we don't have anything better for now. (This
behavior will probably be deprecated in the future.)
(Some people have noted that the old 'noescape' type attribute in
Swift still works, albeit with a warning. That's not something people
should have to type, though---we want to remove it from the language,
as described in SE-0103.)
rdar://problem/32903155
Our libcache implementation of swift::sys::Cache was broken for
ref-counted values (which are used by e.g. the SourceKit ASTManager).
It would always `retain(value)` in `set(key, value)`, but under the hood
libcache shares values, so we would only get one `release(value)` if the
same value was used across multiple keys, or if the same value *and* key
were set multiple times.
This was causing us to never release ASTs cached by SourceKit even when
the underlying libcache purged itself under memory pressure.
rdar://problem/21619189
In anticipation of future attributes, and perhaps the ability to
declare lvalues with specifiers other than 'let' and 'var', expand
the "isLet" bit into a more general "specifier" field.
Previously, users of TokenSyntax would always deal with RC<TokenSyntax>
which is a subclass of RawSyntax. Instead, provide TokenSyntax as a
fully-realized Syntax node, that will always exist as a leaf in the
Syntax tree.
This hides the implementation detail of RawSyntax and SyntaxData
completely from clients of libSyntax, and paves the way for future
generation of Syntax nodes.
It is safe to test pointer equality of an unowned variable, even if
the unowned variable refers to a dead object. Allowing this operation
without an unnecessary unowned abort enables some kinds of caching
schemes more cheaply than can be done with weak variables.
rdar://32142240