This corresponds to the parameter-passing convention of the Itanium C++
ABI, in which the argument is passed indirectly and possibly modified,
but not destroyed, by the callee.
@in_cxx is handled the same way as @in in callers and @in_guaranteed in
callees. OwnershipModelEliminator emits the call to destroy_addr that is
needed to destroy the argument in the caller.
rdar://122707697
These x-refs might not be resolvable using regular lookup from the 'std' module as they could be instantiated/synthesized
by the clang importer. Augment the lookup logic in that case to try clang importer lookup logic that is used during
the conformance to the C++ iterator protocol.
Although I don't plan to bring over new assertions wholesale
into the current qualification branch, it's entirely possible
that various minor changes in main will use the new assertions;
having this basic support in the release branch will simplify that.
(This is why I'm adding the includes as a separate pass from
rewriting the individual assertions)
We still only parse transferring... but this sets us up for adding the new
'sending' syntax by first validating that this internal change does not mess up
the current transferring impl since we want both to keep working for now.
rdar://128216574
CountAttributedType and TypeCoupledDeclRefInfo are new Clang type
and type metadata created for types with the 'counted_by' attribute
that shouldn't be accessible from Swift right now. Hence, marking
them unreachable.
Non-error resilient call sites like this:
DeclContext *DC = MF.getDeclContext(contextID);
Can be replaced with this error tolerant alternative:
DeclContext *DC;
UNWRAP(MF.getDeclContextChecked(contextID), DC);
Use the self interface type instead of the declared interface type, to
get the right type for tuple conformances and the DistributedActor-as-Actor
abstract conformance.
Add the machinery to support suppression of inference of conformance to
protocols that would otherwise be derived automatically.
This commit does not enable any conformances to be suppressed.
Pitch - https://github.com/apple/swift-evolution/pull/2305
Changes highlights:
dependsOn(paramName) and dependsOn(scoped argName) syntax
dependsOn(paramName) -> copy lifetime dependence for all parameters/self except
when we have Escapable parameters/self, we assign scope
lifetime dependence.
Allow lifetime dependence on parameters without ownership modifier.
Always infer copy lifetime dependence except when we have
Escapable parameters/self, we infer scope lifetime dependence.
Allow lifetime dependence inference on parameters without ownership modifier.
Protocols with a superclass bound written as `protocol P where Self: C`
return null from getSuperclass(). Unqualified lookup only cares about
getSuperclassDecl(), so serialize that instead.
Fixes rdar://problem/124478687.
Deserialization may fail if a decl in a dependency changed type between the
time a swiftmodule was built and when it was imported. This can happen because
of changes to the SDK or use of C preprocessor macros. To help understand these
problems, note the specific types causing the mismatch when it leads to a
deserialization failure.
```
.../LibWithXRef.swiftmodule:1:1: error: reference to top-level
declaration 'foo' broken by a context change; the declaration kind of
'foo' from 'A' changed since building 'LibWithXRef'
1 │ A.foo
│ │ ├─ ...
│ ├─ note: a candidate was filtered out because of a type mismatch;
expected: '() -> ()', found: '(Int) -> Float'
```
Make sure we flush the diagnostics consumers to prevent the new
diagnostic style to buffer the deserialization errors without printing
them. These errors may be printed right before an `abort()`, which would
bypass the actual printing of the errors.
Take advantage of the new style to make these diagnostics more readable
as well.
```
.../LibWithXRef.swiftmodule:1:1: remark: reference to type 'MyType'
broken by a context change; 'MyType' was expected to be in 'A', but now
a candidate is found only in 'A_related'
1 │ A.MyType
│ ├─ remark: reference to type 'MyType' broken by a context change;
'MyType' was expected to be in 'A', but now a candidate is found only in
'A_related'
│ ├─ note: the type was expected to be found in module 'A' at
‘.../A.swiftmodule'
│ ├─ note: or expected to be found in the underlying module 'A'
defined at ‘.../module.modulemap'
│ ├─ note: the type was actually found in module 'A_related' at
‘.../A_related.swiftmodule'
│ ├─ note: the module 'LibWithXRef' was built with a Swift language
version set to 5.10 while the current invocation uses 4.1.50; APINotes
may change how clang declarations are imported
│ ├─ note: the module 'LibWithXRef' has enabled library-evolution; the
following file may need to be deleted if the SDK was modified:
‘.../LibWithXRef.swiftmodule'
│ ├─ note: declarations in the underlying clang module 'A' may be
hidden by clang preprocessor macros
│ ├─ note: the distributed module 'LibWithXRef' refers to the local
module 'A'; this may be caused by header maps or search paths
│ ╰─ note: the type 'MyType' moved between related modules; clang
preprocessor macros may affect headers shared between these modules
.../LibWithXRef.swiftmodule:1:1: note: could not deserialize type for
'foo()'
1 │ A.MyType
│ ╰─ note: could not deserialize type for 'foo()'
```
rdar://124700605
This appears to be a code path that wasn't previously stressed when
deserializing a bogus module, but now it is with NoncopyableGenerics, as
Copyable is often emitted as a builtin conformance.
LLVM is presumably moving towards `std::string_view` -
`StringRef::startswith` is deprecated on tip. `SmallString::startswith`
was just renamed there (maybe with some small deprecation inbetween, but
if so, we've missed it).
The `SmallString::startswith` references were moved to
`.str().starts_with()`, rather than adding the `starts_with` on
`stable/20230725` as we only had a few of them. Open to switching that
over if anyone feels strongly though.
We preserve the current semantics that we have today by requiring that either all SILResultInfo are transferring or none are transferring. This also let me swap to @sil_transferring representation.
I did both of these things to fix SIL issues around transferring.
It also ensures that we now properly emit