The old invalidation lattice was incorrect because changes to control flow could cause changes to the
call graph, so we've decided to change the way passes invalidate analysis. In the new scheme, the lattice
is replaced with a list of traits that passes preserve or invalidate. The current traits are Calls and Branches.
Now, passes report which traits they preserve, which is the opposite of the previous implementation where
passes needed to report what they invalidate.
Node: I tried to limit the changes in this commit to mechanical changes to ease the review. I will cleanup some
of the code in a following commit.
Swift SVN r26449
For better consistency with other address-only instruction variants, and to open the door to new exciting existential representations (such as a refcounted boxed representation for ErrorType).
Swift SVN r25902
This will have an effect on inlining into thunks.
Currently this flag is set for witness thunks and thunks from function signature optimization.
No change in code generation, yet.
Swift SVN r24998
1. Eliminate unused variable warnings.
2. Change field names to match capitalization of the rest of the field names in the file.
3. Change method names to match rest of the file.
4. Change get,set method for a field to match the field type.
Swift SVN r24501
Add asserts on the path where we do not expect to have a generic
signature on the function type or generic params on the function
definition.
NFC.
Swift SVN r24026
Rather than dropping generics on the cloned capture, retain them and
create the new partial apply with substitutions.
Thanks to Erik for some initial debugging, the verifier improvement, and
a small test case to start with!
Swift SVN r24024
I am starting to reuse manglings for different passes. I want to make sure that
when we reuse functions we actually get a function created by the same pass.
Swift SVN r23924
The underlying problem is that e.g. even if a method is private but its class is public, the method can be referenced from another module - from the vtable of a derived class.
So far we handled this by setting the SILLinkage of such methods according to the visibility of the class. But this prevented dead method elimination.
Now I set the SILLinkage according to the visibility of the method. This enables dead method elimination, but it requires the following:
1) Still set the linkage in llvm so that it can be referenced from outside.
2) If the method is dead and eliminated, create a stub for it (which calls swift_reportMissingMethod).
Swift SVN r23889
This is to work around rdar://problem/19230183, where the frontend
generates nested functions / closures with generic signatures if they
appear within a generic function, even if they do not use any generic
types.
We now explicitly check the parameters to the function referenced by the
partial_apply rather than just checking for substitutions or checking
whether it has a generic signature.
Fixes rdar://problem/19169437.
Swift SVN r23887
without a valid SILDebugScope. An assertion in IRGenSIL prevents future
optimizations from regressing in this regard.
Introducing SILBuilderWithScope and SILBuilderwithPostprocess to ease the
transition.
This patch is large, but mostly mechanical.
<rdar://problem/18494573> Swift: Debugger is not stopping at the set breakpoint
Swift SVN r22978
Now the SILLinkage for functions and global variables is according to the swift visibility (private, internal or public).
In addition, the fact whether a function or global variable is considered as fragile, is kept in a separate flag at SIL level.
Previously the linkage was used for this (e.g. no inlining of less visible functions to more visible functions). But it had no effect,
because everything was public anyway.
For now this isFragile-flag is set for public transparent functions and for everything if a module is compiled with -sil-serialize-all,
i.e. for the stdlib.
For details see <rdar://problem/18201785> Set SILLinkage correctly and better handling of fragile functions.
The benefits of this change are:
*) Enable to eliminate unused private and internal functions
*) It should be possible now to use private in the stdlib
*) The symbol linkage is as one would expect (previously almost all symbols were public).
More details:
Specializations from fragile functions (e.g. from the stdlib) now get linkonce_odr,default
linkage instead of linkonce_odr,hidden, i.e. they have public visibility.
The reason is: if such a function is called from another fragile function (in the same module),
then it has to be visible from a third module, in case the fragile caller is inlined but not
the specialized function.
I had to update lots of test files, because many CHECK-LABEL lines include the linkage, which has changed.
The -sil-serialize-all option is now handled at SILGen and not at the Serializer.
This means that test files in sil format which are compiled with -sil-serialize-all
must have the [fragile] attribute set for all functions and globals.
The -disable-access-control option doesn't help anymore if the accessed module is not compiled
with -sil-serialize-all, because the linker will complain about unresolved symbols.
A final note: I tried to consider all the implications of this change, but it's not a low-risk change.
If you have any comments, please let me know.
Swift SVN r22215
This will let the performance inliner inline a function even if the costs are too high.
This attribute is only a hint to the inliner.
If the inliner has other good reasons not to inline a function,
it will ignore this attribute. For example if it is a recursive function (which is
currently not supported by the inliner).
Note that setting the inline threshold to 0 does disable performance inlining at all and in
this case also the @inline(__always) has no effect.
Swift SVN r21452
Enable SIL parsing and SIL serialization of semantics.
We add one more field to SILFunctionLayout for semantics. We should refactor
handling of attributes at SIL level, right now they are in SILFunction as bool
or std::string and in SIL serializer as a 1-bit field or an ID field.
rdar://17525564
Swift SVN r19434
hierarchy. I still need to figure out a reliable way to write testcases
for this. For now it's ensured via an assertion in SILCloner::postprocess.
Swift SVN r18917
The implied semantics are:
- side-effects can occur any time before the first invocation.
- all calls to the same global_init function have the same side-effects.
- any operation that may observe the initializer's side-effects must be
preceded by a call to the initializer.
This is currently true if the function is an addressor that was lazily
generated from a global variable access. Note that the initialization
function itself does not need this attribute. It is private and only
called within the addressor.
Swift SVN r16683
Riding off of project_existential[_ref] was convenient, but the
resuls are used quite differently. Note that open_existential[_ref]
still don't print/parse reasonably yet.
Swift SVN r13878
These uses just shuttle a param list from one place to another and can be trivially dropped when we're ready to kill getGenericParams altogether.
Swift SVN r13741
There are some straggling references to the context generic param list, but nothing uses the non-interface param or result types anymore!
Swift SVN r13725
Now the pass does not need to know about the pass manager. We also don't have
runOnFunction or runOnModule anymore because the trnasformation knows
which module it is processing. The Pass itself knows how to invalidate the
analysis, based on the injected pass manager that is internal to the
transformation.
Now our DCE transformation looks like this:
class DCE : public SILModuleTransform {
void run() {
performSILDeadCodeElimination(getModule());
invalidateAnalysis(SILAnalysis::InvalidationKind::All);
}
};
Swift SVN r13598
- purge @inout from comments in the compiler except for places talking about
the SIL argument convention.
- change diagnostics to not refer to @inout
- Change the astprinter to print InoutType without the @, so it doesn't show
up in diagnostics or in closure argument types in code completion.
- Implement type parsing support for the new inout syntax (before we just
handled patterns).
- Switch the last couple of uses in the stdlib (in types) to inout.
- Various testcase updates (more to come).
Swift SVN r13564
Edge SILFunction one step closer to independence from SILFunctionType context by taking the generic param list as a separate constructor parameter, and serializing those params alongside the function record. For now we still pass in the context params from the SILFunctionType in most cases, because the logic for finding the generic params tends to be entangled in type lowering, but this pushes the problem up a step.
Thanks Jordan for helping work out the serialization changes needed.
Compared to r13036, this version of the patch includes the decls_block RecordKind enumerators for the GENERIC_PARAM_LIST layouts in the sil_block RecordKind enumerator, as Jordan had suggested before. r13036 caused buildbot failures when building for iOS, but I am unable to reproduce those failures locally now.
Swift SVN r13485