Handle storing to a mutable property implemented as unsafeMutableAddress. In
SIL, the stored address comes from pointer_to_address. Recognize the addressor
pattern and handle the store as if it writes to a regular property of 'self'.
Required for UnsafePointer<~Escapable>.pointee.
Beside supporting OSSA, this change significantly simplifies the pass.
The main change is that instead of starting at a closure (e.g. `partial_apply`) and finding all call sites, we now start at a call site and look for closures for all arguments. This makes a lot of things much simpler, e.g. not so many intermediate data structures are required to track all the states.
I needed to remove the 3 unit tests because the things those tests were testing are not there anymore. However, the pass is tested with a lot of sil tests (and I added quite a few), which should give good test coverage.
The old ClosureSpecializer pass is still kept in place, because at that point in the pipeline we don't have OSSA, yet. Once we have that, we can replace the old pass withe the new one.
However, the autodiff closure specializer already runs in the OSSA pipeline and there the new changes take effect.
When a non-Escapable value depends on the address of a trivial value, we use a
special computeAddressableRange analysis to compute the trivial value's
scope. Extend that analysis to include unreachable paths.
Fixes this pattern:
inlineStorage.span.withUnsafeBytes
where inlineStorage is a trivial type defined in the user module. This
does not reproduce directly with InlineArray, but it is a problem for
user modules that have their own trivial wrapper around an InlineArray.
Fixes rdar://161630684 (Incorrect diagnostic: lifetime-dependent value escapes its scope)
The assertion is hit through `TypeValueInst.simplify` when constructing
an integer literal instruction with a negative 64-bit `Swift.Int` and a
bit width of 32 (the target pointer bit width for arm64_32 watchOS).
This happens because we tell the `llvm::APInt` constructor to treat the
input integer as unsigned by default in `getAPInt`, and a negative
64-bit signed integer does not fit into 32 bits when interpreted as
unsigned.
Fix this by flipping the default signedness assumption for the Swift API
and introducing a convenience method for constructing a 1-bit integer
literal instruction, where the correct signedness assumption depends on
whether you want to use 1 or -1 for 'true'.
In the context of using an integer to construct an `llvm::APInt`, there
are 2 other cases where signedness matters that come to mind:
1. A non-decimal integer literal narrower than 64 bits, such as
`0xABCD`, is used.
2. The desired bit width is >64, since `llvm::APInt` can either
zero-extend or sign-extend the 64-bit integer it accepts.
Neither of these appear to be exercised in SwiftCompilerSources, and
if we ever do, the caller should be responsible for either (1)
appropriately extending the literal manually, e.g.
`Int(Int16(bitPattern: 0xABCD))`, or (2) passing along the appropriate
signedness.
It uses a check on conformance to ForwardInstruction for walking down guaranteed forwarding uses.
Since apply of borrow accessors cannot be represented as ForwardingInstruction, handle them separately.
Representing apply of borrow accessors for consistent handling in the optimizer is TBD.
When the source of a lifetime dependency is a stack-allocated address, extend
the stack allocation to cover all dependent uses.
This avoids miscompilations for "addressable" dependencies which arise in code
built with -enable-experimental-feature AddressableTypes or
AddressableParameters. It is always an error for SILGen to emit the alloc_stack
in such cases. Nonetheless, we want to handle these unexpected cases gracefully
in SIL as a diagnostic error rather than allowing a miscompile.
Fixes rdar://159680262 ([nonescapable] diagnose dependence on a
temporary copy of a global array)
Add a diagnostic to catch addressable dependencies on a trivial values that have
been copied to a temporary stack location. SILGen should never copy the source
of an addressable dependency to a temporary stack location, but this diagnostic
catches such compiler bugs rather than allowing miscompilation.
Fixes rdar://159680262 ([nonescapable] diagnose dependence on a temporary copy
of a global array)
We were missing adding witness methods of not-specialized witness tables.
This resulted in functions not being processed which led to crashes in IRGen.
rdar://158224693
If the conformance is abstract the witness table is specialized elsewhere - at the place where the concrete conformance is referenced.
Fixes a compiler crash.
add `Test`, which is the SIL-equivalent of `FunctionTest`.
It's invocation closure gets a `TestContext` instead of a `FunctionContext`.
^ The commit message #2 will be skipped:
^ - test
This allows to move many SIL APIs and utilities, which require a context, to the SIL module.
The SIL-part of SwiftPassInvocation is extracted into a base class SILContext which now lives in SIL.
Also: simplify the begin/end-pass functions of the SwiftPassInvocation.
Previously, AutoDiff closure specialization pass was triggered only on
VJPs containing single basic block. However, the pass logic allows
running on arbitrary VJPs. This PR enables the pass for all VJPs
unconditionally. So, if the pullback corresponding to multiple-BB VJP
accepts some closures directly as arguments, these closures might become
specialized by the pass. Closures passed via payload of branch tracing
enum are not specialized - this is subject for future changes.
The PR contains several commits.
1. The thing named "call site" in the code is partial_apply of pullback
corresponding to the VJP. This might appear only once, so we drop
support for multiple "call sites".
2. Enhance existing SILOptimizer tests for the pass.
3. Add validation-tests for single basic block case.
4. The change itself - delete check against single basic block.
5. Add validation-tests for multiple basic block case.
6. Add SILOptimizer tests for multiple basic block case.
Add a fake use for dead-end blocks. This allows gatherKnownLifetimeUses to be
used for local liveness by considering an "unreachable" instruction to generate
liveness. This is important when liveness is used as a boundary within which
access scopes may be extended. Otherwise, we are unable to extend access scopes
into dead-end blocks.
Fixes rdar://154406790 (Lifetime-dependent variable 'X' escapes its
scope but only if actor/class is final)
Unlike addresses of indirect arguments, a pointer argument (e.g. `UnsafePointer`) can escape a function call.
For example, it can be returned.
Fixes a miscompile
rdar://154124497
switch_enum_addr was being treated like a store instruction, which killed
the local enum's liveness. This could result local variable analysis reporting a
shorter lifetime for the local.
This showed up as a missing exclusivity diagnostic because an access scope was
not fully extended across a dependent local variable of Optional type.
This prevents the following pattern from miscompiling. It should report an exclusivity violation:
var mutableView = getOpaqueOptionalView(holder: &holder)!
mutate(&holder)
mutableView.modify()
Fixes rdar://151231236 ([~Escapable] Missing 'overlapping acceses' error when
called from client code, but exact same code produces error in same module)
Consider an empty tuple to be a value introducer rather than a forwarding
instruction.
Fixes rdar://153978086 ([nonescapable] compiler crash with dependency on an
expression)
* add `cloneFunctionBody` without an `entryBlockArguments` argument
* remove the `swift::ClosureSpecializationCloner` from the bridging code and replace it with a more general `SpecializationCloner`