Handle storing to a mutable property implemented as unsafeMutableAddress. In
SIL, the stored address comes from pointer_to_address. Recognize the addressor
pattern and handle the store as if it writes to a regular property of 'self'.
Required for UnsafePointer<~Escapable>.pointee.
Lifetime diagnostics may report an error within an implicit initializer or
accessor. The source location is misleading in these cases and causes much
consternation.
The intent for `@inline(always)` is to act as an optimization control.
The user can rely on inlining to happen or the compiler will emit an error
message.
Because function values can be dynamic (closures, protocol/class lookup)
this guarantee can only be upheld for direct function references.
In cases where the optimizer can resolve dynamic function values the
attribute shall be respected.
rdar://148608854
ac619010e3 backfired when building the
stdlib on rebranch. This time the problem is reversed: we should be
interpreting an integer as unsigned where we no longer do, here:
8f7af45115/SwiftCompilerSources/Sources/Optimizer/InstructionSimplification/SimplifyLoad.swift (L78).
Rather than treating integers as signed by default, make
`Builder.createIntegerLiteral` accept a generic `FixedWidthInteger`, and
manipulate the value based on the generic type argument's signedness.
This doesn't entirely define away unintentional sign extensions, but
makes this mistake of humouring the parameter type less likely.
The assertion is hit through `TypeValueInst.simplify` when constructing
an integer literal instruction with a negative 64-bit `Swift.Int` and a
bit width of 32 (the target pointer bit width for arm64_32 watchOS).
This happens because we tell the `llvm::APInt` constructor to treat the
input integer as unsigned by default in `getAPInt`, and a negative
64-bit signed integer does not fit into 32 bits when interpreted as
unsigned.
Fix this by flipping the default signedness assumption for the Swift API
and introducing a convenience method for constructing a 1-bit integer
literal instruction, where the correct signedness assumption depends on
whether you want to use 1 or -1 for 'true'.
In the context of using an integer to construct an `llvm::APInt`, there
are 2 other cases where signedness matters that come to mind:
1. A non-decimal integer literal narrower than 64 bits, such as
`0xABCD`, is used.
2. The desired bit width is >64, since `llvm::APInt` can either
zero-extend or sign-extend the 64-bit integer it accepts.
Neither of these appear to be exercised in SwiftCompilerSources, and
if we ever do, the caller should be responsible for either (1)
appropriately extending the literal manually, e.g.
`Int(Int16(bitPattern: 0xABCD))`, or (2) passing along the appropriate
signedness.
* Fix the right shift operator which didn't work if the number of bits is exactly 64
* Detect overflow when combining indices
Such large indices usually don't appear in real code, except in internal String operations where (potentially large) integer values are treated as pointers.
Fixes a compiler crash
https://github.com/swiftlang/swift/issues/84372
rdar://160863199
This attribute forces programmers to acknowledge every
copy that is required to happen in the body of the
function. Only those copies that make sense according
to Swift's ownership rules should be "required".
The way this is implemented as of now is to flag each
non-explicit copy in a function, coming from SILGen, as
an error through PerformanceDiagnostics.
It uses a check on conformance to ForwardInstruction for walking down guaranteed forwarding uses.
Since apply of borrow accessors cannot be represented as ForwardingInstruction, handle them separately.
Representing apply of borrow accessors for consistent handling in the optimizer is TBD.
* move some Cloner utilities from ContextCommon.swift directly into Cloner.swift
* add an `cloneRecursively` overload which doesn't require the `customGetCloned` closure argument
* some small cleanups
In contrast to `ref_element_addr`, tail addresses can also be obtained via a superclass (in case the derived class doesn't add any stored properties).
Therefore if the instance types differ by sub-superclass relationship, they may alias.
Fixes a miscompile
The rewrite was missing the intentional omission of `dealloc_stack`s
corresponding to `[dead_end]` `dealloc_box`es. Add the necessary
bridging to get to parity with the original.
Without this check, `dealloc_box [dead_end]`s are promoted to
`dealloc_stack`s but the memory projected out of such `alloc_box`s need
not be valid.
rdar://159271158