The rewrite was missing the intentional omission of `dealloc_stack`s
corresponding to `[dead_end]` `dealloc_box`es. Add the necessary
bridging to get to parity with the original.
Without this check, `dealloc_box [dead_end]`s are promoted to
`dealloc_stack`s but the memory projected out of such `alloc_box`s need
not be valid.
rdar://159271158
Instead, remove `Operand.users(ofType:)` which returned a sequence of `Instruction` - which was a kind of replacement for the missing `InstructionSet` API
We are going to need to add more flags to the various checked cast
instructions. Generalize the CastingIsolatedConformances bit in all of
these SIL instructions to an "options" struct that's easier to extend.
Precursor to rdar://152335805.
* Move the mutating APIs into Context.swift, because SIL can only be mutated through a MutatingContext
* move the `baseOperand` and `base` properties from the instruction classes to the `MarkDependenceInstruction` protocol
* add `valueOrAddressOperand` and `valueOrAddress` in the `MarkDependenceInstruction` protocol
It derives the address of the first element of a vector, i.e. a `Builtin.FixedArray`, from the address of the vector itself.
Addresses of other vector elements can then be derived with `index_addr`.
These APIs are quite convoluted. The checks for var_decl need to be performed in
just the right order. The is a consequence of complexity in the SIL
representation itself, not a problem with the APIs.
It is common for code to accidentally call a less-complete form of the API. It
is essential that they be defined in a central location, and the we get the same
answer whether we start with an Instruction, Argument, or Value. The primary
public interface should always check for debug_value users. The varDecl property
is actually an implementation detail.
It is questionable whether a function like findVarDecl() that returns a basic
property of SIL and does not require arguments should be a property instead. It
is a function to hint that it may scan the use-list, which is not something
we normally want SIL properties to do. Use-lists can grow linearly in function
size. But, again, this is a natural result of the SIL representation and needs
to be considered an implementation detail.
* rename `ScopedInstruction.endOperands` -> `scopeEndingOperands`
* let them behave the same way. For `load_borrow` there was a difference because `endOperands` didn't consider branches to re-borrow phis.
When performing a dynamic cast to an existential type that satisfies
(Metatype)Sendable, it is unsafe to allow isolated conformances of any
kind to satisfy protocol requirements for the existential. Identify
these cases and mark the corresponding cast instructions with a new flag,
`[prohibit_isolated_conformances]` that will be used to indicate to the
runtime that isolated conformances need to be rejected.
InteriorLiveness has a new "visitInnerUses" mode used by DestroyHoisting. That
mode may visit dependent values, which was not valid for noescape
closures. ClosureLifetimeFixup inserts destroys of noescape closures after the
destroys of the captures. So following such dependent value could result in an
apparent use-after-destroy. This causes DestroyHoisting to insert redundant
destroys.
Fix: InteriorUses will conservatively only follow dependent values if they are
escapable. Non-escapable values, like noescape closures are now considered
escapes of the original value that the non-escapable value depends on. This can
be improved in the future, but we may want to rewrite ClosureLifetimeFixup first.
Fixes the root cause of: rdar://146142041
The optional C++ type was bridged to a non-optional Swift type.
The correct way is to bridged the non-optional C++ type to the non-optional Swift type.
* getting the formal source and target types of casts
* `isFromVarDecl` and `usesMoveableValueDebugInfo` for AllocStackInst
* WitnessMethod APIs
* `TryApply.isNonAsync`
We use the formal source type do decide whether a checked_cast_br is
known to succeed/fail. If we don't update it we loose that optimization
That is:
```
checked_cast_br AnyObject in %2 : X to X, bb1, bb2
```
Will not be simplified even though the operand and the destintation type
matches.
The problem with `is_escaping_closure` was that it didn't consume its operand and therefore reference count checks were unreliable.
For example, copy-propagation could break it.
As this instruction was always used together with an immediately following `destroy_value` of the closure, it makes sense to combine both into a `destroy_not_escaped_closure`.
It
1. checks the reference count and returns true if it is 1
2. consumes and destroys the operand
This is used for synthetic uses like _ = x that do not act as a true use but
instead only suppress unused variable warnings. This patch just adds the
instruction.
Eventually, we can use it to move the unused variable warning from Sema to SIL
slimmming the type checker down a little bit... but for now I am using it so
that other diagnostic passes can have a SIL instruction (with SIL location) so
that we can emit diagnostics on code like _ = x. Today we just do not emit
anything at all for that case so a diagnostic SIL pass would not see any
instruction that it could emit a diagnostic upon. In the next patch of this
series, I am going to add SILGen support to do that.