It replaces `DeclAttr::getUnavailable()` and `AvailableAttr::isUnavailable()`
as the designated way to query for the attribute that makes a decl unavailable.
The renamed decl is now stored exclusively in the split request evaluator
storage, which is more efficient since most availability attributes do not
specify a renamed decl.
Code review identified some incorrect UNIMPLEMENTED_CLONEs in DeclAttribute (thank you
Hamish and Rintaro). Fix those, and make sure this can't happen again by checking the type
signatures of clone() in every DeclAttribute subclass.
@lifetime(target: source1, source2...) where target can be any
parameter or 'self'. We cannot have @lifetime attributes with duplicate targets.
Also, update the internal data structures. Previously LifetimeEntry stored
pairwise (target, source) dependencies. Now, LifetimeEntry will store an optional
target descriptor and an array of source descriptors.
In #69257, we modified `ObjCReason` to carry a pointer to the @implementation attribute for the `MemberOfObjCImplementationExtension` kind. This made it mark the @implementation attribute as invalid, suppressing diagnostics from the ObjCImplementationChecker.
However, invalidating the attribute *also* causes it to be skipped by serialization. That isn’t a problem if the diagnostics are errors, since we’ll never emit the serialized module, but #74135 softened these diagnostics to warnings for early adopters.
The upshot was that if Swift emitted one of these warnings when it compiled a library, clients of that library would see the objcImpl extension as a normal extension instead. This would cause various kinds of mischief: ambiguous name lookups because implementations weren’t being excluded, overrides failing because an implementation was `public` instead of `open`, asserts and crashes in SILGen and IRGen because stored properties were found in seemingly normal extensions, etc.
Fix this by setting a separate bit on ObjCImplementationAttr, rather than the invalid bit, and modifying the implementation checker to manually suppress many diagnostics when that bit is set.
Fixes rdar://134730183.
Some requirement machine work
Rename requirement to Value
Rename more things to Value
Fix integer checking for requirement
some docs and parser changes
Minor fixes
Upstreams the necessary changes to compile references to `@backDeployed`
declarations correctly when a `macabi` target triple or a `-target-variant` is
specified.
If a protocol provides a deprecated default implementation for a requirement
that is not deprecated, the compiler should emit a warning so the programmer
can provide an explicit implementation of the requirement. This is helpful
for staging in new protocol requirements that should be implemented in
conforming types.
…for extensions. This change also removes @implementation(CategoryName); you should attach the category name to the @objc attribute instead. And there are small changes to how much checking the compiler will do on an @objc @implementation after the decl checker has discovered a problem with it.
The implementation of `#if hasAttribute(...)` only accepted declaration
attributes. It should also accept type attributes, like `@retroactive`.
Resolves rdar://125195051
Our standard conception of suppressible features assumes we should
always suppress the feature if the compiler doesn't support it.
This presumes that there's no harm in suppressing the feature, and
that's a fine assumption for features that are just adding information
or suppressing new diagnostics. Features that are semantically
relevant, maybe even ABI-breaking, are not a good fit for this,
and so instead of reprinting the decl with the feature suppressed,
we just have to hide the decl entirely. The missing middle here
is that it's sometimes useful to be able to adopt a type change
to an existing declaration, and we'd like older compilers to be
able to use the older version of the declaration. Making a type
change this way is, of course, only really acceptable for
@_alwaysEmitIntoClient declarations; but those represent quite a
few declarations that we'd like to be able to refine the types of.
Rather than trying to come up with heuristics based on
@_alwaysEmitIntoClient or other sources of information, this design
just requires the declaration to opt in with a new attribute,
@_allowFeatureSuppress. When a declaration opts in to suppression
for a conditionally-suppressible feature, the printer uses the
suppression serially-print-with-downgraded-options approach;
otherwise it uses the print-only-if-feature-is-available approach.
When determining whether a declaration should be considered unavailable at
runtime, ignore `@available` attributes for application extension platforms but
continue searching for other `@available` attributes that might still make the
declaration unavailable. This ensures corner cases like these are handled:
```
// Dubious, but allowed
@available(macOS, unavailable)
@available(macOSApplicationExtension, unavailable)
public func doublyUnavailableOnMacOSFunc() {}
// Expresses an uncommon, but valid constraint
@available(macCatalyst, unavailable)
@available(iOSApplicationExtension, unavailable)
public func confusingDiamondAvailabilityInheritanceFunc() {}
```