Correct a regression related to use of partially applied initializers,
which should be rejected only if it happens in a delegation chain.
Resolves: [SR-10837](https://bugs.swift.org/browse/SR-10837)
Resolves: rdar://problem/51442825
Introduce a fix to detect and diagnose situations when omitted
generic arguments couldn't be deduced by the solver based on
the enclosing context.
Example:
```swift
struct S<T> {
}
_ = S() // There is not enough context to deduce `T`
```
Resolves: rdar://problem/51203824
While computing a type of member via `getTypeOfMemberReference`
let's delay opening generic requirements associated with function
type until after self constraint has been created, that would give
a chance for contextual types to get propagated and make mismatch
originated in generic requirements much easier to diagnose.
Consider following example:
```swift
struct S<T> {}
extension S where T == Int {
func foo() {}
}
func test(_ s: S<String>) {
s.foo()
}
```
`foo` would get opened as `(S<$T>) -> () -> Void` and contextual `self`
type is going to be `S<String>`, so applying that before generic requirement
`$T == Int` would make sure that `$T` gets bound to a contextual
type of `String` and later fails requirement constraint `$T == Int`.
This is much easier to diagnose comparing to `$T` being bound to
`Int` right away due to same-type generic requirement and then
failing an attempt to convert `S<String>` to `S<Int>` while simplifying
self constraint.
Resolves: rdar://problem/46427500
Resolves: rdar://problem/34770265
Currently we check that the fixes share the same anchor, however this
doesn't account for the case where, given an ApplyExpr, one fix is
anchored on its function expr, and another is anchored on the apply
itself (because the former fix might be looking at the callee's
requirements, and the latter fix might be looking at an argument of
the call).
This commit changes the logic such that we check that fixes share the
same callee locator, which covers the above case. In addition, now
that we have the callee locator, we can use this to find the overload
directly.
This commit adds `ConstraintSystem::getCalleeLocator`, which forms a
locator that describes the callee of a given expression. This function
is then used to replace various places where this logic is duplicated.
This commit also changes the conditions under which a ConstructorMember
callee locator is formed. Previously it was formed for a CallExpr with a
TypeExpr function expr. However, now such a locator is formed if the
function expr is of AnyMetatypeType. This allows it to be more lenient
with invalid code, as well as work with DotSelfExpr.
Resolves SR-10694.
Introduce an attribute @_disfavoredOverload that can be used to state
that a particular declaration should be avoided if there is a
successful type-check for a non-@_disfavoredOverload. It's a way to
nudge overload resolution away from particular solutions.
The ConstraintSystem class is on the order of 1000s of bytes in size on
the stacka nd is causing issues with dispatch's 64k stack limit.
This changes most Small data types which store data on the stack to non
small heap based data types.
Instead of always requiring a call to be made to pass argument
to `@autoclosure` parameter, it should be allowed to pass argument
by value to `@autoclosure` parameter which can return a function
type.
```swift
func foo<T>(_ fn: @autoclosure () -> T) {}
func bar(_ fn: @autoclosure @escaping () -> Int) { foo(fn) }
```
Detect situations where key path doesn't have capability required
by the context e.g. read-only vs. writable, or either root or value
types are incorrect e.g.
```swift
struct S { let foo: Int }
let _: WritableKeyPath<S, Int> = \.foo
```
Here context requires a writable key path but `foo` property is
read-only.
Currently `getPotentialBindingsForRelationalConstraint` doesn't
respect the fact that type of key path expression has to be a
form of `KeyPath`, instead it could eagerly try to bind it to
`Any` or other contextual type if it's only available
information.
This patch aims to fix this situation by filtering potential
bindings available for type variable representing type of
the key path expression.
Resolves: SR-10467
We have a systemic class of issues where noescape types end up bound to
type variables in places that should not. The existing diagnostic for
this is ad-hoc and duplicated in several places but it doesn't actually
address the root cause of the problem.
For now, I've changed all call sites of createTypeVariable() to set the
new flag. I plan on removing enough occurrences of the flag to replicate
the old diagnostics. Then we can continue to refine this over time.
In a few corner cases we built DeclRefExpr and MemberRefExpr
for references to types. These should just be TypeExpr so that
SILGen doesn't have to deal with it.
This also fixes a bug where a protocol typealias with an
unbound generic type could not be accessed properly from
expression context, but that is just so incredibly obscure.
Move checking for index Hashable conformance from CSApply (post-factum)
to the solver and use recorded conformance records complete subscript
components.
We currently assume that, if a subscript is declared within a value type’s decl, it must need `self` to be passed inout. This isn’t true for static subscripts, because even though the DeclContext is a value type, the metatype is actually a reference type. Skip this check for non-instance members.
NFC until static subscripts are added.
Implicit argument expression was necessary to generate keypath
constraint which is used to validate a choice picked for the member.
But since read-only check has been factored out it's now possible
to validate choice directly in combination with new 'keypath dynamic lookup'
locator associated with member type variable which represents result
of the dynamic lookup.
`openUnboundGenericType` eagerly tries to add conditional requirements
associated with chain of parents of the given type if type has been
declared inside of constrained extension. But one of the parent types
might be unbound e.g. `A.B` which means it has to be opened, which
by itself, would add such requirements.
Resolves: rdar://problem/49371608
Instead of waiting until the overload is attempted, let's figure out
if there is anything wrong with it beforehand and attach a fix to the
"bind overload" constraint representing it.
Further simplify `addOverloadSet` and move "outer" candidate handling
to the only place where it comes up - `simplifyMemberConstraint`.
Also move constraint generation for choices into a separate method.
This is a stepping stone on the path to enable attaching fixes to
the overload choices.
This is a follow-up to https://github.com/apple/swift/pull/23194,
which broke a case were single local overload choice was preferred
over any number of outer alternatives.
- Remove whole disjunction favoring which has no effect;
- Avoid creating separate disjunction for "inner" choices,
which is going to be flattened later anyway.
This narrow favoring rule makes more sense as part of disjunction
partitioning, because it is not dependent on the use site at all and
should only kick in when other options fail.
The "common type" optimization isn't really buying us anything at this
point, because we're not able to make much use of the common structure
often enough. Revert the "common type" optimization for now... I'll
bring it back when there's enough optimization infrastructure around
it to make it compelling.
Implement support for querying the effective overload type for constructors
and fix a semi-related bug for methods returning dynamic Self, which I
had not accounted for.
A declaration with an implicitly-unwrapped optional essentially has two
effective overload types, because the result might be optional or it might
have been forced. Disable computation of the effective overload type in this
case.
When simplifying a function application constraint, check the argument
labels for that application against the disjunction containing the overload
set, disabling any overloads with mis-matching labels. This is staging for
several different directions:
* Eliminating the argument label matching from performMemberLookup, where it
does not belong
* More aggressively filtering the overload set when we have some concrete
information about argument types
* Identifying favored constraints when we have some concrete information
about argument types
At present, the only easily-visible effect of this change is that
we now properly handle argument label matching for non-member functions.
Extend the computation of effective overload types, used in common result
type and common type computations, to also handle subscripts and variables.
This allows the optimization to also apply to subscripts, which did not
previously have a peephole in constraint generation.
Constraint generation for function application expressions contains a simple
hack to try to find the common result type for an overload set containing
callable things. Instead, perform this “common result type” computation
when simplifying an applicable function constraint, so it is more
widely applicable.
Type declarations are handled somewhat specially by the constraint
solver when applied, so temporarily exclude them from the "common
type" computation.
Given an overload set, attempt to compute a "common type" that
abstracts over all entries in the overload set, providing more
structure for the constraint solver.
This PR migrates instance member on type and type member on instance diagnostics handling to use the new diagnostics framework (fixes) and create more reliable and accurate diagnostics in such scenarios.