"private" is a very overloaded term already. "Cascading" instead of
"non-private" is a bit more clear about what will happen with this sort
of lookup.
No functionality change. There are some double negatives I plan to clean
up in the next commit, but this one was supposed to be very mechanical.
Swift SVN r23969
This is sort of two commits squashed into one: first, update
ReferencedNameTracker to record whether a name or type is non-private,
along with changing all clients to assume non-private; and second,
actually try to (conservatively) decide if a particular unqualified lookup can
be considered private.
What does "private" mean? That means that a dependency does not affect
"downstream" files. For example, if file A depends on B, and B depends on C,
then a change in C normally means A will get rebuilt. But if B's dependencies
on C are all private dependencies (e.g. lookups from within function bodies),
then A does not need to be rebuilt.
In practice there are several rules about when we can make this assumption,
and a few places where our current DeclContext model is not good enough to
distinguish private uses from non-private uses. In these cases we have to
be conservative and assume that the use is non-private (and thus that
downstream files will need to be rebuilt).
Part of rdar://problem/15353101
Swift SVN r23447
We need to do this mainly to figure out when extensions can affect this file.
This is part of the intra-module dependency tracking work to implement
incremental rebuilds.
Part of rdar://problem/15353101
Swift SVN r22927
This tracks top-level qualified and unqualified lookups in the primary
source file, meaning we see all top-level names used in the file. This
is part of the intra-module dependency tracking work that can enable
incremental rebuilds.
This doesn't quite cover all of a file's dependencies. In particular, it
misses cases involving extensions defined in terms of typealiases, and
it doesn't yet track operator lookups. The whole scheme is also very
dependent on being used to track file-level dependencies; if C is a subclass
of B and B is a subclass of A, C doesn't appear to depend on A. It only
works because changing A will mark B as dirty.
Part of rdar://problem/15353101
Swift SVN r22925