All llvm::Functions created during IRGen will have target-cpu and target-features
attributes if they are non-null.
Update testing cases to expect the attribute in function definition.
Add testing case function-target-features.swift to verify target-cpu and
target-features.
rdar://20772331
Swift SVN r28186
Fixes rdar://problem/20583365, and incidentally gets test/Interpreter/layout_reabstraction.swift to work without ObjC interop as well.
Swift SVN r27557
This is needed to support inline caching of self.dynamicType.foo().
Fixes <rdar://problem/19888836> Swift compiler segmentation fault during static analysis
Swift SVN r25686
They don't need one, and nobody really conforms to the AnyObject sham protocol at runtime. Fixes rdar://problem/19624697, though there's going to be a similiar problem with metatype-to-AnyObject casts that needs fixing as well.
Swift SVN r24802
The optimizer could eliminate these but isn't there yet. These instructions are valid nonetheless and should be emittable. Fixes rdar://problem/18934125.
Swift SVN r23269
These always fail, and it doesn't make sense to inline this check into the cast site, so provide additional runtime functions for metatype-to-objc-existential casts.
Swift SVN r23237
The code path here is mostly the same as the class cast case--we have to test the ObjC class (if it is a class) against any ObjC protocols, then look up conformances for the native protocols.
Swift SVN r23184
- A spot fix in SILGen for reabstracting the result of a downcast, which fixes checked casts to function types.
- Associate the layout information in type metadata records with the most abstract representation of the type. This is the correct thing to do in cases where we need the metadata as a tag for an opaque value--if we store a value in an Any, or pass it as an unconstrained generic parameter, we must maximally reabstract it. This fixes the value semantics of existentials containing trivial metatypes.
- To ensure that we get runtime layout of structs and enums correct when they contain reabstractable types, introduce a "metadata for layout" concept, which doesn't need to describe the canonical metadata for the type, but only needs to describe a type with equivalent layout and value semantics. This is a correctness fix that allows us to correctly lay out generic types containing dependent tuples and functions, and although we don't really take advantage of it here, it's also a potential runtime performance win down the road, because we could potentially produce direct metadata for a primitive type that's layout-equivalent with a runtime-instantiated type. To aid in type safety here, push SILType deeper into IRGen in places where we potentially care about specific representations of types.
- Finally, fix an inconsistency between the runtime and IRGen's concept of what spare bits unmanaged references and thick metatypes have.
Together, these fixes address rdar://problem/16406907, rdar://problem/17822208, rdar://problem/18189508, and likely many other related issues, and also fixes crash suite cases 012 and 024.
Swift SVN r21963
unexpected forematter from the superclass.
This requires a pretty substantial shift in the
generic-metadata allocation/initialization dance
because (1) we can't allocate class metadata without
knowing what the superclass is and (2) the offset
from the metadata cache entry to the address point is
no longer determined solely by the metadata pattern.
While I'm making invasive changes to metadata, fix
two race conditions in metadata creation. The first
is that we need to ensure that only one thread succeeds
at lazily creating a generic-metadata cache. The second
is that we need to ensure that only one thread actually
attempts to create a particular metadata; any others
should block until the metadata is successfully built.
This commit finishes rdar://17776354. LLDB will
need to adjust to the runtime-private metadata layout
changes.
Swift SVN r20537