This matches how dispatch_once works in C, dramatically cutting the cost of a global accessor by avoiding the runtime call in the hot path and giving the global a unique branch for the CPU to predict away. For now, only do this for Darwin; non-ObjC platforms don't necessarily expose their "done" value as ABI like ours do.
While we're here, change "once" to take a thin function pointer. We don't ever emit global initializers with context dependencies, and this simplifies the runtime glue between swift_once and dispatch_once/std::call_once a bit.
Swift SVN r28166
Preparation to fix <rdar://problem/18151694> Add Builtin.checkUnique
to avoid lost Array copies.
This adds the following new builtins:
isUnique : <T> (inout T[?]) -> Int1
isUniqueOrPinned : <T> (inout T[?]) -> Int1
These builtins take an inout object reference and return a
boolean. Passing the reference inout forces the optimizer to preserve
a retain distinct from what’s required to maintain lifetime for any of
the reference's source-level copies, because the called function is
allowed to replace the reference, thereby releasing the referent.
Before this change, the API entry points for uniqueness checking
already took an inout reference. However, after full inlining, it was
possible for two source-level variables that reference the same object
to appear to be the same variable from the optimizer's perspective
because an address to the variable was longer taken at the point of
checking uniqueness. Consequently the optimizer could remove
"redundant" copies which were actually needed to implement
copy-on-write semantics. With a builtin, the variable whose reference
is being checked for uniqueness appears mutable at the level of an
individual SIL instruction.
The kind of reference count checking that Builtin.isUnique performs
depends on the argument type:
- Native object types are directly checked by reading the
strong reference count:
(Builtin.NativeObject, known native class reference)
- Objective-C object types require an additional check that the
dynamic object type uses native swift reference counting:
(Builtin.UnknownObject, unknown class reference, class existential)
- Bridged object types allow the dymanic object type check to be
bypassed based on the pointer encoding:
(Builtin.BridgeObject)
Any of the above types may also be wrapped in an optional. If the
static argument type is optional, then a null check is also performed.
Thus, isUnique only returns true for non-null, native swift object
references with a strong reference count of one.
isUniqueOrPinned has the same semantics as isUnique except that it
also returns true if the object is marked pinned regardless of the
reference count. This allows for simultaneous non-structural
modification of multiple subobjects.
In some cases, the standard library can dynamically determine that it
has a native reference even though the static type is a bridge or
unknown object. Unsafe variants of the builtin are available to allow
the additional pointer bit mask and dynamic class lookup to be
bypassed in these cases:
isUnique_native : <T> (inout T[?]) -> Int1
isUniqueOrPinned_native : <T> (inout T[?]) -> Int1
These builtins perform an implicit cast to NativeObject before
checking uniqueness. There’s no way at SIL level to cast the address
of a reference, so we need to encapsulate this operation as part of
the builtin.
Swift SVN r27887
We have enough flag bits on function types now to warrant stashing an extra word in the metadata key alongside the arguments and results, so add one, and pack the number of arguments, function convention, and 'throws' bit in there. This lets us merge the separate metadata caches for thick/thin/block/C functions into one, saving a bit of runtime memory, and simplifying a bunch of repetitive code in the runtime and IRGen.
This also fixes a subtle bug we had where the runtime getFunctionTypeMetadata function expected the result argument to be passed in the arguments array, but IRGen was passing it as a separate argument, which would have caused function type metadata to fail to be uniqued by result type.
Swift SVN r27651
Some future-proofing to let us change ErrorType's reference counting in the future, or to use various tagged pointer optimizations in its representation.
Swift SVN r27213
Provide a special single-ObjC-refcounted type info for error existentials, and lower the existential box instructions to their corresponding runtime calls.
Swift SVN r26469
Teach IRGen and the runtime about the extra inhabitants
of function pointers, and take advantage of that in
thin and thick function types.
Also add runtime entrypoints for thin function type
metadata.
Swift SVN r24346
Using the intrinsics is obnoxious because I needed them
to return Builtin.NativeObject?, but there's no reasonable
way to safely generate optional types from Builtins.cpp.
Ugh.
Dave and I also decided that there's no need for
swift_tryPin to allow a null object.
Swift SVN r23824
References to functions that take inout parameters crash the compiler
because InOutType isn't a "real" type in itself and has no special type
metadata to emit. It merely further qualifies the function's input
types.
For example, we would like to have a unique entry in the cache for:
var f: (T, T) -> ()
and
var f2: (inout T, T) -> ()
For each argument type metadata pointer in the function's input, take
advantage of pointer alignment and mark the lowest bit if it is inout.
Since the metadata cache uses pointers to create the key, this creates a
unique entry while still being able to extract the actual pointer.
This fixes <rdar://problem/17655125>, and a couple of other similar
crashes.
Swift SVN r23557
Just injecting a new protocol descriptor into an already-running ObjC runtime isn't a good idea, since the runtime might have already canonized the protocol somewhere else, and it won't recognize that classes conform to protocols it doesn't know about.
Swift SVN r23313
These always fail, and it doesn't make sense to inline this check into the cast site, so provide additional runtime functions for metatype-to-objc-existential casts.
Swift SVN r23237
If for some reason an eliminated dead method is called (e.g. because of a compiler bug),
then the application aborts with a readable error message.
Swift SVN r22990
This is a type that has ownership of a reference while allowing access to the
spare bits inside the pointer, but which can also safely hold an ObjC tagged pointer
reference (with no spare bits of course). It additionally blesses one
Foundation-coordinated bit with the meaning of "has swift refcounting" in order
to get a faster short-circuit to native refcounting. It supports the following
builtin operations:
- Builtin.castToBridgeObject<T>(ref: T, bits: Builtin.Word) ->
Builtin.BridgeObject
Creates a BridgeObject that contains the bitwise-OR of the bit patterns of
"ref" and "bits". It is the user's responsibility to ensure "bits" doesn't
interfere with the reference identity of the resulting value. In other words,
it is undefined behavior unless:
castReferenceFromBridgeObject(castToBridgeObject(ref, bits)) === ref
This means "bits" must be zero if "ref" is a tagged pointer. If "ref" is a real
object pointer, "bits" must not have any non-spare bits set (unless they're
already set in the pointer value). The native discriminator bit may only be set
if the object is Swift-refcounted.
- Builtin.castReferenceFromBridgeObject<T>(bo: Builtin.BridgeObject) -> T
Extracts the reference from a BridgeObject.
- Builtin.castBitPatternFromBridgeObject(bo: Builtin.BridgeObject) -> Builtin.Word
Presents the bit pattern of a BridgeObject as a Word.
BridgeObject's bits are set up as follows on the various platforms:
i386, armv7:
No ObjC tagged pointers
Swift native refcounting flag bit: 0x0000_0001
Other available spare bits: 0x0000_0002
x86_64:
Reserved for ObjC tagged pointers: 0x8000_0000_0000_0001
Swift native refcounting flag bit: 0x0000_0000_0000_0002
Other available spare bits: 0x7F00_0000_0000_0004
arm64:
Reserved for ObjC tagged pointers: 0x8000_0000_0000_0000
Swift native refcounting flag bit: 0x4000_0000_0000_0000
Other available spare bits: 0x3F00_0000_0000_0007
TODO: BridgeObject doesn't present any extra inhabitants. It ought to at least provide null as an extra inhabitant for Optional.
Swift SVN r22880
I introduced a function swift_keepAlive2() which has a different signature from
swift_keepAlive() until I can verify that the stdlib is using the new
infrastructure.
The difference in signature is that swift_keepAlive2 takes just a pointer while
swift_keepAlive also takes a metadata value that is not necessary for our
purposes anymore.
Swift SVN r21718
pass the size and alignment of each field. Take advantage
of this to pass a constant size and alignment when
possible.
This avoids the need to recursively find type metadata for
every field type, allowing generic recursively-structured
classes to be built. There are a number of more complicated
cases that this approach isn't good enough for, but this
is good enough for now to fix rdar://18067671.
Also make an effort to properly support generic subclasses
of Objective-C classes.
Swift SVN r21506
Failable initializers will need to clean up an uninitialized 'self' box in the case where a class initializer calls out to a 'super.init' or 'self.init' fails. Because some framework classes assume that they have a refcount of exactly one during initialization, we have to take 'self' from the box during the delegation, and reinitialize the box with the result of the delegation on success. This means we actually have to implement lowering for dealloc_box.
Swift SVN r21493
The allocator's crimes include:
* It uses OS SPI that must not be used by non-OS apps.
* It does not play well with memory debugging tools like Instruments.
* It does not return memory to the OS in response to memory pressure.
* It is less tested than we would like because many configurations
inadvertently turn it off (such as running from Xcode).
* Its per-thread magazine implementation does not actually work.
* Its "try alloc" flag is incompletely implemented and never used.
* Its "zero fill" flag is unimplemented and inconsistently used.
Swift SVN r20757
unexpected forematter from the superclass.
This requires a pretty substantial shift in the
generic-metadata allocation/initialization dance
because (1) we can't allocate class metadata without
knowing what the superclass is and (2) the offset
from the metadata cache entry to the address point is
no longer determined solely by the metadata pattern.
While I'm making invasive changes to metadata, fix
two race conditions in metadata creation. The first
is that we need to ensure that only one thread succeeds
at lazily creating a generic-metadata cache. The second
is that we need to ensure that only one thread actually
attempts to create a particular metadata; any others
should block until the metadata is successfully built.
This commit finishes rdar://17776354. LLDB will
need to adjust to the runtime-private metadata layout
changes.
Swift SVN r20537
This is the most general dynamic cast operation, permitting
arbitary source and destination types and handling arbitrary
changes in representation. A value of the destination type
is constructed in an address provided by the caller; flags
control the behavior w.r.t. the source value.
Not yet used; probably buggy in various particulars.
Swift SVN r18815
dynamicCastClass assumes that the destination type is a
Swift class type.
dynamicCastObjCClass assumes that the destination type is
an ObjC class type (represented as ObjC metadata, not type
metadata).
dynamicCastUnknownClass assumes only that the destination
type is some kind of class.
Swift SVN r18776
Blocks need their own type metadata with value witnesses appropriate to the block representation. Fixes <rdar://problem/16918740> and <rdar://problem/16981126>.
Swift SVN r18508
Prior to this fix this would fail:
(swift) import Foundation
(swift) extension NSDate { func foo() { println("foo") }}
As the Class for NSDate was not initialized.
<rdar://problem/16934080>
Swift SVN r18206
At long last, our generic classes are legal ObjC citizens. Note that you'll need to be either on OSX 10.10, or on OSX 10.9 with a recent enough Xcode 6.0 to have a not-broken arclite (6A207 worksforme) and building against a OSX 10.10 SDK, for this to work going forward.
Swift SVN r17916
If we officially register our classes with the ObjC runtime, we can't get away with generic class instances sharing a runtime name or a metaclass anymore, so pack the metaclass and rodata templates into the generic metadata template and add codegen to the fill function to wire up the references at instantiation time. Since we don't have a runtime mangler yet, create a stupid unique name for classes by tacking on the pointer value.
Swift SVN r17882
Give us a way to formally represent autoreleases in SIL separate from autoreleased returns, allowing us to lifetime-extend inner pointer parameters the lazy way and hopefully clean up some asmname hacks in the stdlib implementation too.
Swift SVN r16632
Replace HeapTypeInfo::hasSwiftRefcount with a "getSwiftRefcounting" method, returning an enum indicating whether a heap object has native/ObjC/block/unknown refcounting semantics. Use _Block_copy and _Block_release for block refcounting.
Swift SVN r16041
Language features like erasing concrete metatype
values are also left for the future. Still, baby steps.
The singleton ordinary metatype for existential types
is still potentially useful; we allow it to be written
as P.Protocol.
I've been somewhat cavalier in making code accept
AnyMetatypeType instead of a more specific type, and
it's likely that a number of these places can and
should be more restrictive.
When T is an existential type, parse T.Type as an
ExistentialMetatypeType instead of a MetatypeType.
An existential metatype is the formal type
\exists t:P . (t.Type)
whereas the ordinary metatype is the formal type
(\exists t:P . t).Type
which is singleton. Our inability to express that
difference was leading to an ever-increasing cascade
of hacks where information is shadily passed behind
the scenes in order to make various operations with
static members of protocols work correctly.
This patch takes the first step towards fixing that
by splitting out existential metatypes and giving
them a pointer representation. Eventually, we will
need them to be able to carry protocol witness tables
Swift SVN r15716
Calling +class on our generic classes is not enough to reliably realize a generic class instantiation; if the method is already hot in the shared metaclass's cache, it will bypass the actual realization of the instance. Try another hack to force the runtime to realize the class by invoking class_getInstanceMethod on it, which appears to work more reliably. Factor the hack out into a runtime call so we can tweak it more easily in the future. This gets <rdar://problem/15898373> and <rdar://problem/15898701> working.
Thanks DTrace and John for helping puzzle out what was going on here.
Swift SVN r12934
This lets IRGen avoid emitting an alloca for common generic metadata instantiations. These entry points can also be marked "readnone", and the general getGenericMetadata entry point can be "readonly", giving LLVM's optimizer a fighting chance on unspecialized generic code.
Swift SVN r12789