We can now use internal declarations safely and correctly in source files!
The remaining work is to make sure testable imports work reliably through
modules, which is important for debugging unit tests.
It's also possible this work will affect compile time, but for the most
part we don't have large quantities of internal declarations that are
being ignored, and some day we will strip them out of non-testable modules
altogether.
Part of rdar://problem/17732115
Swift SVN r26633
(Note that this registry isn't fully enabled yet; it's built so that
we can test it, but has not yet taken over the primary task of
managing conformances from the existing system).
The conformance registry tracks all of the protocols to which a
particular nominal type conforms, including those for which
conformance was explicitly specified, implied by other explicit
conformances, inherited from a superclass, or synthesized by the
implementation.
The conformance registry is a lazily-built data structure designed for
multi-file support (which has been a problematic area for protocol
conformances). It allows one to query for the conformances of a type
to a particular protocol, enumerate all protocols to which a type
conforms, and enumerate all of the conformances that are associated
with a particular declaration context (important to eliminate
duplicated witness tables).
The conformance registry diagnoses conflicts and ambiguities among
different conformances of the same type to the same protocol. There
are three common cases where we'll see a diagnostic:
1) Redundant explicit conformance of a type to a protocol:
protocol P { }
struct X : P { }
extension X : P { } // error: redundant explicit conformance
2) Explicit conformance to a protocol that collides with an inherited
conformance:
protocol P { }
class Super : P { }
class Sub : Super, P { } // error: redundant explicit conformance
3) Ambiguous placement of an implied conformance:
protocol P1 { }
protocol P2 : P1 { }
protocol P3 : P1 { }
struct Y { }
extension Y : P2 { }
extension Y : P3 { } // error: ambiguous implied conformance to 'P1'
This happens when two different explicit conformances (here, P2 and
P3) placed on different declarations (e.g., two extensions, or the
original definition and other extension) both imply the same
conformance (P1), and neither of the explicit conformances imply
each other. We require the user to explicitly specify the ambiguous
conformance to break the ambiguity and associate the witness table
with a specific context.
Swift SVN r26067
Most tests were using %swift or similar substitutions, which did not
include the target triple and SDK. The driver was defaulting to the
host OS. Thus, we could not run the tests when the standard library was
not built for OS X.
Swift SVN r24504
properties.
The main design change here is that, rather than having
purportedly orthogonal storage kinds and has-addressor
bits, I've merged them into an exhaustive enum of the
possibilities. I've also split the observing storage kind
into stored-observing and inherited-observing cases, which
is possible to do in the parser because the latter are
always marked 'override' and the former aren't. This
should lead to much better consideration for inheriting
observers, which were otherwise very easy to forget about.
It also gives us much better recovery when override checking
fails before we can identify the overridden declaration;
previously, we would end up spuriously considering the
override to be a stored property despite the user's
clearly expressed intent.
Swift SVN r22381
While we could allow declarations with the same name and type if all but one
are private, it feels a bit subtle that one declaration at top-level scope can
shadow another declaration at top-level scope elsewhere in the module. Let's
start with this for now.
Currently guarded by -enable-private-discriminators.
Part of rdar://problem/17632175
Swift SVN r21602
Previously, we were just storing setter accessibility via the accessibility
level on the setter function. However, some Stored properties never actually
have a setter synthesized, which led to the compiler dropping the setter
accessibility at serialization time. Rather than try to hack up something
clever, just store the setter accessibility explicitly in every
AbstractStorageDecl. (We still only serialize it for VarDecls, because
settable SubscriptDecls always have setter functions.)
<rdar://problem/17816530>
Swift SVN r20598
Otherwise, the subclasser isn't really supposed to know that the base
property is internally settable. Overriding such a property isn't likely
to do much good (because the base class won't call your overridden setters),
but allowing observation leaks information about the base class.
<rdar://problem/17632360>
Swift SVN r20440
Rather than just saying "'Foo' is not constructible with '()'", say
"'Foo' cannot be constructed because it has no accessible initializers",
which would help framework authors realize what they did wrong.
<rdar://problem/17717714>
Swift SVN r20232
This applies to both qualified and unqualified lookups, and is controlled
by the -enable-access-control and -disable-access-control flags. I've
included both so that -disable-access-control can be put into specific tests
that will eventually need to bypass access control (e.g. stdlib unit tests).
The default is still -disable-access-control.
Swift SVN r19146