This patch adds additional entries to the JSON command messages output
by the Swift compiler. It's now possible to get the command executable
("command_executable") and arguments ("command_arguments") as a single
string and array, respectively, rather than having to parse the
shell-escaped command line provided in the "command" key.
<rdar://problem/35701809>
Will be used to verify that withoutActuallyEscaping's block does not
escape the closure.
``%escaping = is_escaping_closure %closure`` tests the reference count. If the
closure is not uniquely referenced it prints out and error message and
returns true. Otherwise, it returns false. The returned result can be
used with a ``cond_fail %escaping`` instruction to abort the program.
rdar://35525730
The allocation phase is guaranteed to succeed and just puts enough
of the structure together to make things work.
The completion phase does any component metadata lookups that are
necessary (for the superclass, fields, etc.) and performs layout;
it can fail and require restart.
Next up is to support this in the runtime; then we can start the
process of making metadata accessors actually allow incomplete
metadata to be fetched.
This is yet another waypoint on the path towards the final
generic-metadata design. The immediate goal is to make the
pattern a private implementation detail and to give the runtime
more visibility into the allocation and caching of generic types.
The key path pattern needs to include a reference to the external descriptor, along with hooks for lowering its type arguments and indices, if any. The runtime will need to instantiate and interpolate the external component when the key path object is instantiated.
While we're here, let's also reserve some more component header bytes for future expansion, since this is an ABI we're going to be living with for a while.
Terminal currently renders em dashes and apostrophes incorrectly:
"please file a report to AppleXs bug reporter"
"features X being fast is rare"
Also reformats some whitespace to remove a double space after a
sentence:
"a great way for anyone to help improve Swift. The bug tracker"
@noescape function types will eventually be trivial. A
convert_escape_to_noescape instruction does not take ownership of its
operand. It is a projection to the trivial value carried by the closure
-- both context and implementation function viewed as a trivial value.
A safe SIL program must ensure that the object that the project value is based
on is live beyond the last use of the trivial value. This will be
achieve by means of making the lifetimes dependent.
For example:
%e = partial_apply [callee_guaranteed] %f(%z) : $@convention(thin) (Builtin.Int64) -> ()
%n = convert_escape_to_noescape %e : $@callee_guaranteed () -> () to $@noescape @callee_guaranteed () -> ()
%n2 = mark_dependence %n : $@noescape @callee_guaranteed () -> () on %e : $@callee_guaranteed () -> ()
%f2 = function_ref @use : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
apply %f2(%n2) : $@convention(thin) (@noescape @callee_guaranteed () -> ()) -> ()
release_value %e : $@callee_guaranteed () -> ()
Note: This is not yet actually used.
Part of:
SR-5441
rdar://36116691
A "retroactive" protocol conformance is a conformance that is provided
by a module that is neither the module that defines the protocol nor
the module that defines the conforming type. It is possible for such
conformances to conflict at runtime, if defined in different modules
that were not both visible to the compiler at the same time.
When mangling a bound generic type, also mangle retroactive protocol
conformances that were needed to satisfy the generic requirements of
the generic type. This prevents name collisions between (e.g.) types
formed using retroactive conformances from different modules. The
impact on the size of the mangling is expected to be relatively small,
because most conformances are not retroactive.
Fixes the ABI part of rdar://problem/14375889.
32-bit has a 7-bit inline unowned refcount, then 31 bits in the side table. Overflowing the inline count in deinit on an object that didn't already have a side table would crash, because the code assumed that creating a side table in deinit was not allowed.
(64-bit has 31 bits inline and in the side table. Overflowing the inline count immediately overflows the side table as well, so there's no change in behavior there.)
rdar://problem/33765960
This new format more efficiently represents existing information, while
more accurately encoding important information about nested generic
contexts with same-type and layout constraints that need to be evaluated
at runtime. It's also designed with an eye to forward- and
backward-compatible expansion for ABI stability with future Swift
versions.