The other side of #17404. Since we don't want to generate up front key path metadata for properties/subscripts with no withheld implementation details, the client should generate a key path component that can be used to represent a key path component based on its public interface.
Client code can make a best effort at emitting a key path referencing a property with its publicly exposed API, which in the common case will match what the defining module would produce as the canonical key path component representation of the declaration. We can reduce the code size impact of these descriptors by not emitting them when there's no hidden or possibly-resiliently-changed-in-the-past information about a storage declaration, having the property descriptor symbol reference a sentinel value telling client key paths to use their definition of the key path component.
Wire up the request-evaluator with an instance in ASTContext, and
introduce two request kinds: one to retrieve the superclass of a class
declaration, and one to compute the type of an entry in the
inheritance clause.
Teach ClassDecl::getSuperclass() to go through the request-evaluator,
centralizing the logic to compute and extract the superclass
type.
Fixes the crasher from rdar://problem/26498438.
This flag supports promoting KeyPath access violations to an error in
Swift 4+, while building the standard library in Swift 3 mode. This is
only necessary as long as the standard library continues to build in
Swift 3 mode. Once the standard library build migrates, it can all be
ripped out.
<rdar://problem/40115738> [Exclusivity] Enforce Keypath access as an error, not a warning in 4.2.
Mandatory pass will clean it up and replace it by a copy_block and
is_escaping/cond_fail/release combination on the %closure in follow-up
patches.
The instruction marks the dependence of a block on a closure that is
used as an 'withoutActuallyEscaping' sentinel.
rdar://39682865
To mark when a user of it is known to escape the value. This happens
with materializeForSet arguments which are captured and used in the
write-back. This means we need to keep the context alive until after
the write-back.
Follow-up patches to fully replace the PostponedCleanup hack in SILGen
by a mandatory SIL transformation pass to guarantee the proper lifetime
will use this flag to be more conservative when extending the lifetime.
The problem:
%pa = partial_apply %f(%some_context)
%cvt = convert_escape_to_noescape [not_guaranteed] [escaped] %pa
%ptr = %materialize_for_set(..., %cvt)
... write_back
... // <-- %pa needs to be alive until after write_back
Code may end up indirectly using a witness table for a Clang-imported type by inlining code that used the conformance from another module, in which case we need to ensure we have a local definition at hand in the inlining module so we can have something to link against independently. This needs to be fixed from both sides:
- During serialization, serialize not only witness tables from the current module, but from Clang-imported modules too
- During deserialization, when the SILLinker walks a loaded module, ensure that all shared conformances get deserialized, including those from ApplyInsts and inherited/associated type protocol requirements.
Fixes rdar://problem/38687726.
Code may end up indirectly using a witness table for a Clang-imported type by inlining code that used the conformance from another module, in which case we need to ensure we have a local definition at hand in the inlining module so we can have something to link against independently. This needs to be fixed from both sides:
- During serialization, serialize not only witness tables from the current module, but from Clang-imported modules too, so that their definitions can be used by other modules that inline code from the current module
- During IRGen, when we emit a reference to a SILWitnessTable or SILFunction declaration with shared linkage, attempt to deserialize the definition on demand
Fixes rdar://problem/38687726.
Add serialization layouts for rare instructions that take extra attributes. We
can continue adding bits to these layout without affecting the layout of the
vast majority of instructions.
A public subscript might have generic indexes that aren't unconditionally Hashable, or might use indexes that are retroactively made Hashable, so the property descriptor on the implementer's side can't always resiliently provide this information to the final instantiated KeyPath.
Will be used to verify that withoutActuallyEscaping's block does not
escape the closure.
``%escaping = is_escaping_closure %closure`` tests the reference count. If the
closure is not uniquely referenced it prints out and error message and
returns true. Otherwise, it returns false. The returned result can be
used with a ``cond_fail %escaping`` instruction to abort the program.
rdar://35525730
This is mostly intended to be used for testing at this point; in the
long run, we want to be using availability information to decide
whether to weak-link something or not. You'll notice a bunch of FIXMEs
in the test case that we may not need now, but will probably need to
handle in the future.
Groundwork for doing backward-deployment execution tests.
This will allow key paths to resiliently reference public properties from other binaries by referencing a descriptor vended by the originating binary. NFC yet, this just provides printing/parsing/verification of the new component.