This is safe to do with hash(into:), because random hash collisions can be eliminated with awesome certainty by trying a number of different hash seeds. (Unless there is a weakness in SipHash.)
In some cases, we intentionally want hashing to produce looser equivalency classes than equality — to let those cases keep working, add an optional hashEqualityOracle parameter.
Review usages of checkHashable and add hash oracles as needed.
StdlibUnittest uses gyb to avoid duplicating many source-context
arguments. However, this means that any test that wishes to add new
expect helpers has to also be gybbed. Given that this structure hasn't
changed in years, and we should have a real language support
eventually, de-gyb it.
The change in CheckMutableCollectionType.swift.gyb previously resulted
in a runtime failure, and before that a compiler crash.
It appears that whatever type checker bug(s) were causing the issue
have been resolved in the last few months, so I'm returning this
closure to a single-expression form and cleaning up a couple other
places where we had an unneeded temporary as well.
Resolves rdar://problem/33781464.
Streamline internal String creation. Previously, everything funneled
into a single generic function, however, every single call of the
generic funnel had relevant specific information that could be used
for a more efficient algorithm.
In preparation for efficiently forming small strings, refactor this
logic into a handful of more specialized subroutines to preserve more
specific information from the callers.
Switch to a resilient hashing interface, currently implementing SipHash-1-3.
Compiler-synthesized Hashable conformances still use the old _combineHashValues interface for now.
Beyond switching hashing algorithms, this also enables per-execution hash seeds, fulfilling a long-standing prophecy in Hashable’s documentation.
To reduce the possibility of random test failures, StdlibUnittest’s TestSuite overrides the random hash seed on initialization.
rdar://problem/24109692
rdar://problem/35052153
* Make Range conditionally a Collection
* Convert ClosedRange to conditionally a collection
* De-gyb Range/ClosedRange, refactoring some methods.
* Remove use of Countable{Closed}Range from stdlib
* Remove Countable use from Foundation
* Fix test errors and warnings resulting from Range/CountableRange collapse
* fix prespecialize test for new mangling
* Update CoreAudio use of CountableRange
* Update SwiftSyntax use of CountableRange
* Restore ClosedRange.Index: Hashable conformance
* Move fixed typechecker slowness test for array-of-ranges from slow to fast, yay
* Apply Doug's patch to loosen test to just check for error
* Eradicate IndexDistance associated type, replacing with Int everywhere
* Consistently use Int for ExistentialCollection’s IndexDistance type.
* Fix test for IndexDistance removal
* Remove a handful of no-longer-needed explicit types
* Add compatibility shims for non-Int index distances
* Test compatibility shim
* Move IndexDistance typealias into the Collection protocol
* Refactor Indices and Slice to use conditional conformance
* Replace ReversedRandomAccessCollection with a conditional extension
* Refactor some types into struct+extensions
* Revise Slice documentation
* Fix test cases for adoption of conditional conformances.
* [RangeReplaceableCollection] Eliminate unnecessary slicing subscript operator.
* Add -enable-experimental-conditional-conformances to test.
* Gruesome workaround for crasher in MutableSlice tests
* [SR-4005] Allow heterogenous comparisons in elementsEqual
When a user is supplying a predicate to compare the type equivalence
isn’t required
* elementsEqualWithPredicate tests
Compares a string of a number with an integer value by using the
elementsEqualPredicate closure
* Update test expectations to use new sequence element types
* Update hardcoded test to reference sequence